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-- \_t ,_t ,_t ,_t ,_t ,_t ,_t ]

algorithm for the multimode static inverse of Ft

generalized//_t to include a switch (e) to suppress zero dynamics

body coordinates of specific force

specific force generating function in body coordinates: fb = f{(zb)

specific moment generating function in body coordinates: m b = f_(zb)



ft
ff

9
h

h#

Ik
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mb

M.

nb
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7' r

S(x)
T
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T O

¢

u

u9

U p

uf

Up

_P

_r

W

Wr

Xs
x

runway coordinates of specific force

t-coordinates of specific force, Ctrfr

specific force error of the pure feedback approximation

state flow for mode # (e.g., 5: = f_z)

acceleration of gravity

altitude, h = -rr3

state-to-output function in mode # [e.g., y = hu(x)]

time interval of segment k
moment of inertia matrix

macro maneuver: step forward a given distance in a given time

maxima of a unit step maneuver in i th derivative

mass

body coordinates of the specific moment, m b = n b ÷ Jbl S(_brb)JbWbrb

state space model for mode p

body coordinates of the specific torque, n b = J_IN b

parameter space for mode #

polynomial segment with given boundary conditions

parameter p = (mr, W, OT,...)

set of all real n-tuples

runway-fixed axis system

i th basis vector of r

runway coordinates of position vector ?'

matrix of vector cross product operator

algorithm for the exact dynamic inverse

duration of the k th segment

algorithm for the pure feedback dynamic inverse

algorithm for the inverse of T

algorithm for the inverse of T O

time in seconds

active control space for mode #

control u = (urn, Up, U f)

guidance control

plant control

configuration control (flap, aileron droop, speed brake)

moment control (roll, pitch, yaw)

power control (throttle, side force, nozzle)

input to plant control servos

relative air velocity vector

runway coordinates of velocity vector g

weight of aircraft
wind vector

runway coordinates of wind

state space of aircraft for mode #

state
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X e

xg

x p

j:P

32"_.,

Y

Yb

yg

Zb

state error

guidance state

plant state

estimated plant state

rigid-body state x_, = (rr, vr, Cbr, _brb)

output space for mode p

output

output of the force and moment algorithm, Yb = (fb, rob)

desired output

input to the force and moment algorithm

()_
()-1

()(k)
()

transpose

inverse

k th time derivative

vector

C

0

OT

P

Pc_

Pc

Fry
k

czj

aVbrb

three-dimensional column of zeros except row i, which is 1

switch for the suppression zero dynamics
trim error threshold

pitch angle

air temperature

operating mode, # = (Pa, #y, Pu)
coordinatization mode

control mode

output mode

elementary step maneuver in jth derivative

angular velocity, so that _Tbr ----S(aVbrb)Cbr

Functions of Dynamic Forms

f[SFm(x)]

MFk(_I)
MF >--RF

MF _ RF

AIF >- AFq

M_-<Apq
MF _- PF

MF -< PF

RF_.

SFk(_)

SFk(_).SFk(y)
vFk(xb)

Euler angle form to order k for sequence q

scalar form of f(x), namely [f(x),](x),..., f(m)(x)]

matrix form, [M, AI,...,M (k)]

transformation taking matrix forms to rotational forms

transformation taking rotational forms to matrix forms

transformation taking matrix forms to Euler angle forms in sequence q

transformation taking Euler angle forms in sequence q to matrix forms
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,(k-l)]rotation form, Cbr' C°brb' • • " ' _brb J
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Dynamic Forms Part II:

Application to Aircraft Guidance

George Meyer and (3. Allan Smith

Ames Research Center

SUMMARY

The paper describes a method for guiding a dynamic system through a given set of points. The

paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence

of waypoints through which the aircraft trajectory must pass. The waypoints typically specify time,

position, and velocity. The guidance problem is to synthesize a system state trajectory that satisfies both

the ATC and aircraft constraints. Complications arise because the controlled process is multidimensional,

multiaxis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude

of operating modes, which may number in the hundreds. Each such mode defines a distinct state

space model of the process by specifying the state space coordinatization, the partition of the controls

into active controls and configuration controls, and the output map. Furthermore, mode transitions are

required to be smooth.

The proposed guidance algorithm is based on the inversion of the pure feedback approximation,

followed by correction for the effects of zero dynamics. The paper describes the structure and major

modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.



1 INTRODUCTION

Development of a methodology for the design and verification of aviation operations systems is a

NASA goal. (See ref. 1.) For the purposes of the present report, several interacting components of such

a system may be identified as shown in figure 1. They include air traffic control (ATC) and a varying

number of flights, each consisting of a pilot crew, the aircraft, and the flight vehicle management system

(VMS). Finally, the ever-present environmental conditions, including weather and hardware failures,

affect all the other components.

ENVIRONMENT

Figure 1. Major components of an aviation operations system.

Consider the vehicle management system; its purpose is to provide interfaces between the human

pilot, the ATC, and the aircraft. The major subsystems of VMS and their interactions are shown in

figure 2. (See ref. 2.) The human pilot interacts with the VMS at three levels. At the highest level,

which is knowledge-based (termed strategic in the upper left-hand corner of the diagram), the pilot in

command generates the flight plan and proposes it to ATC, accounting for weather, route, fuel reserves,

and other parameters. ATC then modifies this proposed flight plan as necessary to provide separation

from other traffic, and issues a clearance to the flight. On board the aircraft, the clearance is checked

for legality and feasibility, and either accepted or renegotiated with ATC, as necessary. The clearance

is then translated into an executable reference flightpath, and appropriate modes are selected to enable

the aircraft to fly the accepted clearance.
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Figure 2. Major components of a VMS.

In addition to operational modes such as takeoff, climb, cruise, approach, and landing that are

selected by the pilot at the strategic level, lower-level modes are selected by the pilot at the tactical

level. These tactical modes include guidance, configuration, flight control, navigation (state estimation),

and display modes.

At the skill level, the pilot is manually controlling the aircraft with little assistance from the

automatics.

It may be noted that there is a mixture of both computation and message types of variables. Some

computations, particularly at the high levels, are discrete or sentential in that they are based on a formal

logic and they manipulate sentences in that logic, while other computations are arithmetic or numeric

in the sense that they employ mathematical methods that manipulate real variables. Similarly, the

communication between subsystems may be by means of both sentences and numbers. In the diagram,

dashed lines represent flows of sentential or boolean variables; solid lines represent flows of numbers.

For the present discussion, continuous variables and sampled data need not be distinguished between,

but both can be referred to as analog variables. Systems with mixed variables, both discrete and analog,

are referred to as hybrid. It is apparent that a VMS is a hybrid system.

In the diagram, the aircraft represents the airframe, including engines, servo actuators for all con-

trols, and all sensors. In this view, the aircraft is the main source of analog variables. It is modeled

mathematically with differential equations, which are multidimensional, multiaxis, highly coupled, non-

linear, and time varying.



The interaction between the sentential and analog components of a VMS is further illustrated by the

diagram in figure 3. In this model, the VMS communicates with ATC by means of sentences and with

the controlled aircraft by means of analog signals. The virtue of the diagram is that it shows that there

must be an interface, called herein a dynamics translator, which translates sentential commands into

functions of time, and conversely, analog measurements into sentential descriptions of system behavior.

AIR TRAFFIC DISTURBANCE
HUMAN CONTROL

FLK_HT

VMS

MULTI-AXIS 8ERVO

ARfl'HM ETIC FUNCTIONS

CONTROLLER OF TIME

MOTION

Figure 3. Interface between sentential and analog layers.

The multiaxis servo is the analog layer. The arithmetic controller closes the loops around aircraft

disturbances and modeling errors, thereby making the analog layer robust, and it provides accurate

tracking of input signals.

Another representation of the aviation operations system is shown in figure 4. For simplicity, only

the fully automatic mode of operation, in which the flight is controlled completely by ATC and flight

computers, is shown. A hierarchy of subsystems or layers is in effect, namely, (top to bottom) ATC,

flight, VMS, path generator, guidance, and regulator. The hierarchy operates in terms of the horizon

width, persistence, detail, and type. In planning a sequence of way points, ATC has the widest horizon,

the plan changes infrequently (minutes to hours), it is very coarse, and the planning algorithm is of the

discrete type. The path generator, in converting the waypoints into control points (described later in the

report) has a narrower horizon than does ATC; replanning occurs more frequently (seconds to minutes);

there is a moderate amount of detail in the plan; and planning employs a mix of discrete and continuous

methods. The guidance, which transforms the path into the corresponding reference motion of aircraft

state and control (x9, ug), has a narrow horizon with only several seconds of "look-ahead" capability;

replanning occurs frequently (several seconds), and the planning employs mainly continuous methods.

Finally, at the bottom of the hierarchy, the regulator transforms the tracking error :r e -- £cP - :rg, which

is the difference between the estimated plant state and the guidance state, into corrective control that is

combined with the guidance control u9 to produce the plant control u p. (The negative of the standard

servo error is chosen so that xg may be treated as the origin.) The regulator has the narrowest horizon,
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without any look-ahead capability; the shortest persistence (milliseconds); and the greatest amount of

detail. The algorithm is based on continuous (and sampled-data) methods.

The environment injects disturbances into the aviation operations system at many levels. The

standard procedure for reducing the effects of these disturbances is to employ feedback. Centralized

feedback in which the hierarchy is ignored is always possible, but it leads, in all but the simplest cases,

to very complex and largely unsolvable performance analysis problems. It seems that a more promising

approach is to structure the feedback hierarchically and to match at each level the variable type of the

feedback with the algorithm type of the level. If the feedback can be layered in this way, then the

complete system will consist of a hierarchy of closed-loop subsystems. Each subsystem has the servo

structure in the sense that its function is to closely follow its command in spite of disturbances. In

such a completely layered structure, the type of command and disturbance depends on the type of the

layer. The expected analytical advantage of such a structure is that each servo has a relatively simple

input/output description, and communication between servos is simpler. This is not passive modeling--

it is active design to make it so. Part of the freedom available in the design process is used to structure

the system; the remainder is used for control. The present working hypothesis is that such complete

layering is possible for the aviation operations system. Consider the block diagram shown in figure 5.

In the figure, the ATC waypoints are represented by a waypoint card sequence (WCS) that describes the

waypoints. The discrete event control system operates on the waypoint card sequence, the pilot input,

and the system behavior represented by the status card sequence (SCS), and produces the control card

sequence (CCS). The control cards are the only means for controlling the rest of the system below this

level. That is, at this level the CCS is the control variable. Furthermore, the SCS is the only means for

observing the behavior of the system below this level.
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disturbances

The guidance output trajectory generator translates the control cards into appropriate continuous

functions of time that define the commanded motion of system output yC, which may include, for

example, the runway coordinates of aircraft position vector, the position of flaps, and other variables.

This generator also specifies the operation mode #, which specifies some of the details (such as control

mode) of just how the maneuver given by yC is to be executed.

The guidance state trajectory generator expands yC into a complete state trajectory and correspond-

ing control (xg, ug) that satisfies the state equation of the aircraft model and the output map. The

aircraft is then regulated to that reference state. Finally, the performance monitor reports any deviations

from the expected motion by means of the SCS.

This report is concerned only with the transformation of CCS into the corresponding guidance

(xg, ug). The guidance algorithms that are developed are quite general; they apply to both civilian

and military operations, including remotely piloted vehicles, and to a variety of aircraft types such as

conventional takeoff and landing (CTOL), short takeoff and landing (STOL), vertical takeoff and landing

(VTOL), helicopters, and tilt rotors.

The guidance problem considered in the present report may be described as follows. The control

point table describes the control points. For example, figure 6 shows a 90-degree turn that is composed

of several segments, which are specified by control points. The straight west-to-east line segment

terminates on the control point c k. The next segment is a variable curvature transition to a circle at

Ck+ 1. The circular arc, terminating at ck+ 2, is followed by a variable curvature transition terminating

on a north/south line at Ck+ 3. The CCS provides the x,y coordinates at each control point. In addition,

it may specify the duration or the arc length of the segment, as well as a set of consistent terminal

conditions for some of the many additional variables such as altitude, climb rate, ground speed, airspeed,

heading, thrust level, and flap deployment. The CCS also provides higher level instructions such as

the type of segment (linear, circular, or helical), and it specifies the operating mode for the segment.

The operating mode provides such high-level instructions as (1) which of several possible state space

representations is to be used; (2) which of several possible state-to-output maps is to be used; and

6



C k+3

Figure 6. Typical maneuver specified by means of control points.

(3) which of several control modes is to be used. The operating mode is discussed in detail in the

main body of the present report. At this point we merely note that there may easily be over a hundred

possible operating modes.

Each such mode (denoted by #) defines a different state space model .A/l/z of the same underlying

physical process. That is, each operating mode defines a particular state space (Xp), control space (Up),

parameter space (Pp), output space (Yp), state flow (f_z), and output map (hp):

t E R, xEXp, uEUp, pEPp, yEYp

5: = fp(X,u,p) (1)

y = hp(x)

The dimension of the state space Xp remains constant; the meaning of the coordinates is mode-

dependent. All controls are distinguished into two types: The controls used by the regulator are

called the active controls (or controls, for short) u; the rest of the controls are called parameters p. The

dimensions of the active controls and output spaces, Up and Yp, respectively, while always equal to

each other, may be mode-dependent. For example, in one control mode the throttle may be an active

control that is used by the control system to execute a particular maneuver; in that case the throttle is

included in Up. On the other hand, occasions arise where the throttle is not available for active control,

as when set to idle. In that case the throttle is considered to be a parameter coordinate in P_z and not a

control coordinate in U#. Similarly, both airspeed and climb rate may be controlled outputs, in which

case both coordinates are in Y_z. But there is a mode in which the climb rate is not controlled explicitly;

then it is not one of the coordinates in Yp. Some variables, such as the wind, are always in Pp.

In general, each such model .A4p is multidimensional, multiaxis, cross-coupled, nonlinear, and,

because of p, time-varying. The problem is to find for every segment k the evolution of state and

control,

(x g, ug)(t), t E I k

such that they satisfy both the state and output equations.

t E I k, and for the given desired output yg,

 g(t)
vg(t)

(2)

That is, for the duration of the segment

= f#[xg(t),ug(t),p(t)]

= hp[xg(t)]
(3)



Furthermore, the segments must be patched smoothly together. A solution of this class of problems is

the subject of the present report.

The report consists of three major sections. First, a general model of an aircraft is developed,

and the typical structure of the force and moment generators is described. The Harrier VTOL fighter

aircraft is used as an example. Next, the command generator in which the aircraft maneuvers are

defined is developed. The maneuvers are represented by a sequence of control points that are linked

with polynomials. Several useful representations of aircraft attitude are also presented. Finally, the

multimode inverse algorithm, which generates the initial state and the control time history that produce

the desired maneuver, is developed. The methodology is illustrated by means of several numerical

examples.

The aircraft model used in the report is quite realistic. As a result, it is relatively complex. The

state space is high-dimensional and, because of rotations, not Euclidean. The model is multiaxis (up

to six), cross-coupled, and nonlinear. Furthermore, there is a need to employ several representations,

output maps, and control strategies. The methodology of dynamic forms developed in "Dynamic Forms

Part I: Functions" (ref. 3) provides effective means for the management of this complexity. A dynamic

form of order k of a variable of time is simply the variable together with its first k time derivatives.

The essential aspects of the methodology are reviewed and employed throughout the present report.



2 AIRCRAFT MODEL

In this section a state equation describing the open-loop dynamic behavior of an aircraft is developed

in several steps. This equation forms the basis for a variety of state space models that are developed

and used in the remainder of the report.

2.1 Rigid Body

The core of the model is a rigid body moving in three-dimensional, inertial space, subject to

the gravitational, aerodynamic, and propulsion forces• In this report the dynamic effects due to Earth

rotation and nonflatness are ignored• This approximation causes less than 0.004 g acceleration error

for speeds up to 600 mph, and such errors are consistent with the assumed modeling accuracy of the

aerodynamic and propulsion forces. Similarly, the aircraft mass, location of the center of mass, and the

moments of inertia are assumed to be quasistatic in the sense that their time derivatives do not appear

in the model. Furthermore, the effects of rotating parts of the aircraft are ignored. All such translational

and angular acceleration errors that are of the order of 0.004 g and 0.002 radians/sec 2, respectively, are

ignored since their effects can be easily controlled by means of a realistic regulator.

Let '_ be a local (runway) right-handed, orthonormal axis system in which f'3 points in the direction

of the local vertical (down), r'l points in the direction of the runway, and r'2 = 7"3 × _1- The '_ system

is attached to the runway. The runway coordinates of vectors are denoted by the subscript r.

Several variables are fundamental to the following discussion. The position, velocity, and accel-

eration of the aircraft center of mass relative to the runway are denoted by 7, _7, and _, respectively,

the average wind velocity at _' by uT, and the relative air velocity by ffa = _7- aT. The aircraft mass

is denoted by m, the total nongravitational force acting on the aircraft by b_, the specific force by

f = F/m, and the gravitational force by m9_'3 with scalar, constant 9. Since r is assumed to be

inertial, the standard form of the translational equations of motion follows:

÷r = Vr (4)
i;r = ar = fr + g_3

where 6i for i = 1,2, 3 is a column matrix with zero entries except in row i, where the entry is 1.

Another frequently used axis system is attached to the aircraft. In this (body) system, b, bl

points tail to nose, b3 is in the aircraft plane of symmetry and perpendicular to b'l, pointing down, and

b2 = b'3 × b'l points along the right wing. The b system is attached to the aircraft center of mass.

The attitude of the aircraft relative to the runway is defined by the direction cosine matrix Cbr so

that, for example, the body coordinates of the aircraft velocity _' are given by

Vb = CbrVr (5)

The inverse of the direction cosine matrix equals its transpose: C_r 1 = C T = Crb. The body coordinates

of the angular velocity of b relative to '_ are denoted by Wbrb, so that

Cbr = S(Wbrb)Cbr (6)



where, for any three-dimensional column matrix x,

(o 03S(z) = -z3
x 2 --x 1

(7)

The function S represents the vector cross product. For example, 2- = ff x Z is represented in '_ as

Xr = --S(yr)Zr.

The angular momentum and the total torque about the aircraft center of mass are denoted by/_ and
4....4 .

/_, respectively. Since r is assumed to be inertial,

L,. = N,. (8)

where the overdot denotes the time derivative of the (scalar) elements of Lr. But L b = CbrL r, so that

after applying equation (6),

L b = N b + S(_brb)L b (9)

The body coordinates of the moment-of-inertia operator about the center of mass are denoted by Jb so

that, ignoring rotating components,

L b = JbCObrb (1 O)

and, since the time derivatives of Jb are ignored, the Euler equations (refs. 5 and 6) become

Jbd_lrrb = N b + S(Wbrb)JbWbrb

or, equivalently,

_brb =nb + j[l S(_rb)jb_brb

where the specific torque n b = jblNb . For convenience, let

m b = n 0 + Jb 1S(wbrb)Jbc%rb

The parameter m b is the specific moment.

In summary, the equations of motion of a rigid body in inertial space follow:

rr _--- vr

Or = CrbA + g_a
Cbr = S(CObrb)Cbr

JObrb = m b

Next a model of the specific force fb and moment m b is developed.

(I1)

(12)

(13)

(14)

2.2 Force and Moment Generators

In this section the structure of the function relating the aerodynamic, propulsion, and reaction

control forces and moments to other process variables is developed. The special case of the Harrier

aircraft is considered, but the formalism applies to other aircraft types.
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TheYAV-8BHarrier (ref. 4) is apowered-liftvertical/shorttakeoffandlanding(V/STOL) transonic,
light, attack aircraft. The engineis a single turbofan,whosethrust may be divertedby meansof a
nozzlesystem.The directedthrust supportsthe aircraft in low-speedflight. Aerodynamic lift supports

the aircraft in high-speed, conventional flight. The general features are shown in figure 7. The engine

thrust vector is controllable in the longitudinal plane by means of the throttle, which controls the

magnitude, and the nozzle, which controls the direction. The control of aircraft rotation depends on

the flight condition. At high speed, the torque vector is generated aerodynamically by means of the

conventional ailerons, elevator, and rudder. At low speed, when the aerodynamics is ineffective, the

torque vector is generated by means of a reaction control system (RCS). In the RCS, a portion of the

engine gas is ducted to the extremities of the aircraft, where the directed flow produces reaction forces

whose magnitude is controlled by means of valves. The valves are connected to the aircraft roll, pitch,

and yaw controls. In the transition regime, there is a smooth blend of aerodynamics, powered lift, and

RCS. Note that, since a request for moment may produce unwanted forces as a side effect, there may

be zero dynamics.

Roll Pitch Thrust

Figure 7. YAV-8B Harrier aircraft.

The algorithm YAV8B adapted from reference 4 for computing the total force and moment is

shown in figure 8. At the top level, the algorithm implements the function

YAV8B: R 19_R 3 ×R 3 (15)

The input consists of moment controls um E R 3, power controls Up E R 3, configuration controls

uf E R 3, air velocity v_ E /_3, angular velocity CObrb E R 3, pitch angle 0, altitude h, air temperature

0 T, and aircraft weight W. The output consists of the specific force fb E R 3 and the specific moment

m b E R 3. In this case of the Harrier, the power control Up consists of the throttle, empty slot, and

nozzle. In general, the middle term could be a side-force controller. The configuration control uf

includes the flaps, aileron droop, and the speed brake.

11
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Figure 8. Force and moment generation algorithm for the YAV-8B Harrier aircraft.

At the next level down are seven major subalgorithms. Secondary variables are computed first

from the input. The aircraft mass, the location of the aircraft center of mass, and the moment of inertia

matrix are computed in MASSDATA. The air density, pressure, and speed of sound are the outputs of

ATMOS, which models the atmosphere. The airspeed, angles of attack and sideslip, dynamic pressure,

and Mach number are provided by AIRDATA. The preliminary computations are completed in the

FANOUT algorithm, in which the controls (urn, _p, u f) are interpreted in terms of the engine throttle,
the nozzle angle, the eight reaction control valve openings, and the seven aerodynamic control surfaces.

The details of the actual physics of the process are represented by the three large algorithms AERO,

ENGINE, and RCS, which compute the aerodynamic, engine, and reaction control system torque and

force. In the case of YAVSB, there is a one-way interaction between engine and aerodynamics through

the jet effects and a two-way interaction between the engine and the RCS due to bleed gas ejected

through the reaction control valves. The pitch angle 0 and altitude h are used in AERO to compute

the ground effect. Other aircraft types, such as other VTOL types, powered-lift STOLs, helicopters,

tilt rotors, and CTOL aircraft have similar algorithms describing the corresponding force and moment

generators. The action of the algorithm is denoted by

Yb = F(zb) (16)

where the input and output are given by, respectively,

z b = (Um, Up, Uf, V_,a_brb, O,h,W, OT) C (R3) 5 x (R) 4
Yb = (fb, mb) C (R3) 2 ' (17)

Henceforth it is assumed that the algorithm is given for the particular aircraft being considered.
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In general,the body coordinatesv_ of the air velocity, which is an entry in the input %, may be

computed as follows

v_ = Cbr(vr - tVr) (18)

where Wr E R 3 represents the runway coordinates of wind. Another entry, the altitude h, is the negative

of the third coordinate of position:

h = -rr3 (19)

and the pitch angle 0 is the middle Euler angle in the following expansion of the direction cosine matrix

Cbr = E 1(¢)E 2 (0)E 3 (._) (20)

Therefore, z b may be computed from (u, xa.,, p), say

z b = Z(u,z_,,p) (21)

where .u, x_,, p are the combined control, rigid body state, and parameters, respectively, defined as

follows:

_t = ('um,Up, U,f) C U C (R3) 3

x_c = (r,.,v,., Cb,.,wV,.b) E X.., C (R3) a × SO(3) x R 3 (22)

p = OT)cPcR axRxR

The combined algorithm is denoted by F b = (ffb, rm_Jb J' Consequently, equations (14) may be

written as the rigid-body state equation, as follows:

rr _ Vr

i:r = Crbf[(u, xco,p) + 9_53

= S(.Jb,+)Cb,.

&brb = fg(u, xa_,p)

(23)

with the arguments defined by equations (22).

2.3 Simulation Model

In general, the nine controls (urn, Up, u f) are not directly accessible. Rather, intervening dynamics,

c @) and the outputsincluding position and rate limits, exist between the accessible servo inputs (uTeri,Up,

(urn, Up, u f). However, often the control servos may be adequately modeled by the usual second-order

systems of the form

u-F = s 2 + 2_wns + w_ (24)

u 2 , U2p,u) connected to the inputs (u,Cz, Up, uf) by theas shown figure 9. The servo controls ( m ) are c c

usually decoupled servo control laws:

9

(25)
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Figure 9. Block diagram of a typical simulation.

such that there is good tracking for slowly varying inputs that remain within their position limits:

(urn,Up,U:) (u&, u)) (26)

The other inputs to the model are the parameters, namely, runway coordinates of wind Wr, aircraft

weight W, ambient temperature OT, and the rigid-body state xw. The block X b produces the variable

x b, which is the input to the force f{ and moment f_n algorithm. The body coordinates of force fb are

transformed into the runway coordinates fr and the effects of gravity are added, resulting in the aircraft

acceleration at, which is integrated to produce aircraft velocity Vr, and another integration produces

aircraft position rr.

In the rotational part, the body coordinates of the angular acceleration of the aircraft about its

center of mass, d)br b = m b, are integrated to yield the body coordinates of angular velocity relative to

the runway, wbrb, and another integration according to equation (6) results in the direction cosine matrix

Cbr, locating the body axes b relative to the runway axes _.

It should be noted that the presence of the direction cosine matrix Cbr causes the state space to be

nonflat, but a small angle patch of the state space is a subset of R 3°. The analysis of the large angle

behavior of the system is complicated by this relatively large dimension and type of the state space.

The analysis is further complicated by the nature of the force and moment generator, which is generally

high-dimensional, multiaxis, cross-coupled, and nonlinear.

14



In a typical real-time,pilotedsimulation,thealgorithmsshownin figure 9 are connected to several

other systems, such as a cab that provides to the pilot translational and rotational motion cues, and a

cockpit that provides the pilot access to the controls and visual, tactile, audio, and electronic displays.

The simulations are quite realistic. In fact, in many cases the control software is loaded into the

simulation computers, where it is checked out by the test pilot and then loaded without changes and in

exactly the same way into the flight computer and flight tested.

The remainder of the report assumes a high-fidelity force and moment algorithm F b = (ff, f_).
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3 OUTPUT TRAJECTORY COMMAND GENERATOR

The purpose of the command generator is to provide the interface between the discrete and analog

levels. As already noted, the signals in the discrete level are best described as sentences, which compose

the current plan of action generated by the automatic reasoning system. The signals in the analog level

are real functions of time. At the detailed level these signals are, of course, not analog but sampled

data. However, since the present variables are relatively slowly varying, while the usual sampling rate is

high, sampling is largely ignored, and the signals are analog. The high-level plan to be executed by the

aircraft may be considered to be a series of maneuvers. Furthermore, there is a hierarchy of maneuvers

in the sense that a particular maneuver may be further parsed into a more-detailed concatenation of

simpler maneuvers. The maneuvers have both qualitative and quantitative components. In this chapter,

a method for converting the commands of the sentential (discrete) level to the analog level is developed.

The interface is realized by means of a sequence of records (control cards) that specify the complete

maneuver. In the next chapter, these maneuvers are converted into detailed guidance commands, which

specify the nominal evolution of system state and controls.

3.1 Aircraft Maneuvers

The type of maneuvers that the automatic system should be able to execute is illustrated by the

following examples.

Maneuver M1 = Mx(Ax, At). In this maneuver, the aircraft is required to step forward a given

distance Ax in a given amount of time At. Furthermore, the aircraft is in hover at both the beginning

and the end of the maneuver. This relatively high-level maneuver may be parsed into a sequence of
more elementary submaneuvers, as follows.

M 1 = hover • accelerate • coast • decelerate • hover

The specific case of stepping forward 300 feet is shown in figure 10, where motion is from right to

left. In panel (a) time is zero and the aircraft is in hover with zero pitch attitude and with nozzle at

90 degrees. The control mode is VTOL, in which both the throttle and the nozzle are available for

longitudinal force control. The next submaneuver is to accelerate to 8.2 ft/sec 2, holding pitch attitude

at zero degrees. At (b), 4.5 seconds later, the position, velocity, and acceleration are, respectively,

16 ft, 15 ft/sec, and 8 ft/sec2; the nozzle angle changed to 74 degrees to provide the horizontal force

needed for the specified acceleration. The next submaneuver (panel c) is to coast at 30 ft/sec for two

seconds. Finally, the aircraft is commanded to decelerate to zero velocity. It may be noted that, while

the motion of the aircraft center of mass is symmetric about the midpoint (c), the control is not, because

the available nozzle range is from 5 to 100 degrees. Therefore, the control mode has to be switched

to one in which the nozzle becomes a parameter (in the present example driven to 90 degrees), and

the control action flows through the pitch axis. This control scheme of tipping the thrust is typical

in the control of helicopters. For this reason this control mode is denoted as HEL. In panel (e), at

time 18 sec, the aircraft is hovering over the point 300 ft from the starting point, as specified by the

macromaneuver Mz (300, 18).
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Figure 10. The step forward maneuver, Mx(300, 18).

Similar maneuvers in the lateral My(Ay, At) and vertical Mz(Az, At) directions are, of course,

also of practical interest, as are simultaneous combinations, Mr(A?', At).

Maneuver M2 = Mo(AO, At). In this maneuver, the aircraft center of mass remains fixed while

the pitch angle is changed by the amount A0. The duration of the maneuver is At. The case of

M0(81 , 12) is shown in figure 11, where the drawings are offset for clarity. Initially, the aircraft is

in the VTOL mode and the pitch is zero. During the maneuver the control mode changes to vertical

attitude takeoff and landing (VATOL), that is, a "tail sitter," in which the force control flows through

thrust, pitch, and yaw channels. The nozzle becomes a parameter driven to 9 degrees, and the maneuver

includes a change of coordinates. The near-horizontal attitudes are usually represented by means of the

Euler angles in the standard sequence of roll-pitch-yaw. That representation becomes singular in the

vertical attitude. On the other hand, the yaw-pitch-yaw sequence is nonsingular in the neighborhood of

the vertical attitude but becomes singular for near-horizontal attitudes. During the maneuver the control

system must smoothly patch the two representations.

f

Figure 11. Transition from VTOL to VATOL maneuver, M2.
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Similar maneuversmaybe definedfor theother two axes, namely, roll and yaw. Whether or not

a given maneuver is executable depends on the available control degrees of freedom. If an aircraft,

unlike the Harrier, does have a direct three-axis force controller, then translation and rotation become

independently controllable. In any case, a macromaneuver may consist of simultaneous translation and

rotation submaneuvers. For example, a vertical step together with a large pitch change would look as

shown in figure 11.

Maneuver M3 = FRISBEE. This only partly whimsical example illustrates the multiaxis,

multisegment nature of the maneuvers. It is assumed that an accurate force and moment model exists

in the unusual flight conditions. As shown in figures 12 and 13, the aircraft is taken from steady hover,

through a climbing transition, to intermediate speed flight. In addition, the aircraft executes a flat, 360-

degree yaw maneuver. As before, the motion is from right to left in the figures. Initially, in panel (a),

the Harrier is in steady hover, at which time the command is given to accelerate speed, altitude rate,

and yaw. Some of the variables at 7 sec into the maneuver are shown in panel (b). For example, the

yaw and yaw rate are 90 degrees and 30 degrees/sec, respectively; the nozzle is in vertical position, the

required acceleration being provided by tipping the thrust by means of the roll angle of -6 degrees. In

panel (c), the aircraft is flying backward, the acceleration being provided by the forward position of the

nozzle at 96 degrees, and the roll angle is back at zero. The speed and climb rate are, respectively, 26

and 15 ft/sec. In panel (d), the roll angle is not quite symmetric in comparison with panel (b) because

of growing aerodynamic effects. By 18 sec, panel (e), the yaw maneuver has been completed; the speed

is 50 ft/sec, and the nozzle is at 82 degrees. The Harrier is in longitudinal accelerated, climbing flight.

The transition from VTOL to the CTOL mode is shown in figure 13. Up to this point the control mode

was VTOL, the pitch angle was held at zero, and the flap was set to a maximum of 61 degrees. At

30 sec into the maneuver, panel (g), the control is changed from VTOL to CTOL, in which the lift is

generated mainly by means of the angle of attack. The nozzle is commanded to its minimum, and the

flaps are commanded to retract to 25 degrees. The flaps have to be partially retracted to satisfy the flap

placard, which limits the allowable aerodynamic forces on the flaps for structural reasons. Finally, in

panel (i), the aircraft has transitioned to conventional flight at 215 ft/sec speed and 15 ft/sec climb rate.
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(e) (d) (c) (b) (a)

Figure 12. Low-speed part of the Frisbee maneuver, 2113.

(i) (h) (g) (f)

Figure 13. Conventional-flight part of the Frisbee maneuver, M3.

Maneuver tll 4 = ROLL. This maneuver, shown in figure 14, illustrates the case in which the

definition of the system output changes during the maneuver. In panel (a) the fighter is shown in

horizontal, high-speed flight and in the CTOL control mode. The output is the triple of Cartesian

coordinates of velocity. The aircraft is commanded to acquire a given vertical velocity, and then to

switch to the output mode VYZ in which the variables being controlled are the speed (v) and the lateral

(Y) and normal (Z) components of force. Then the command is given to unload the force by driving

its component perpendicular to the flight path to zero, as in panel (c), at which point the aircraft is in

near free fall, with thrust being used for speed control. Meanwhile, the maneuver analogous to 2111 is
executed in the roll axis:

AI0 = hold ,, accelerate • coast • decelerate • hold

to accomplish the 360-degree roll. Finally, the force is reloaded and level flight is recovered, as shown

in panel (g).
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Figure 14. The high-speed roll maneuver, Ma.

Several characteristics may be extracted from the preceding examples:

• There appears to be a hierarchy of maneuvers so that a maneuver at one level may be parsed

into a sequence of simpler maneuvers from the next lower level.

• In general, the parsing may not be unique.

• The maneuvers are described both qualitatively and quantitatively.

• It is useful to characterize the qualitative behavior of the aircraft by means of operation modes,

such as control modes, coordinates modes, and output modes.

The parsing problem, which is, as yet, unsolved, is the subject of current research. The present report

is concerned only with the representation and generation of the elementary maneuvers.
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3.2 Polynomial Segments

Consider the example maneuver Mi shown in figure 10; the objective is construction of a time

history of position y(t) such that the aircraft accomplishes the step forward in the allotted time and

such that it is flyable, that is, the aircraft motion is consistent with the existing dynamic and saturation

constraints. Position is, of course, linked to acceleration by a pair of integrators. Usually, acceleration

is not a directly accessible control variable. For example, in panel (d) of figure 10, acceleration is

accomplished by means of rotation, which inserts two more integrators in the control path. Angular

acceleration is essentially directly accessible because the servos controlling the torque generators have

a high bandwidth. However, since the servos are rate limited, one more integrator is inserted in the

control path to obtain continuity of the control variable. Similar considerations apply to other controls.

As a result, in order to be a possible motion of aircraft position, y and four of its derivatives must be

continuous at all times. Consequently, the special case of a string of integrators shown in figure 15

with y = :rt is a model of the single-axis-motion command generator• The k th time derivative of xl is

X(5) ,.(4) .,(3) v(2) v(1) v(O)

U X5 X4 X3 X2 Xl

Figure 15. Single string of integrators as model for single-axis position generator.

denoted by xl k). Let the state and control of this system be denoted by, respectively,

x= [xl0,x l,x 2,x 3,
u = x_ 5)

(27)

Suppose that the boundary conditions Ix(0), x(T)] are to be connected by a polynomial satisfying the

structure in figure 15. For n integrators, the boundary conditions require 2n values, which are provided

by a polynomial of degree 2n - 1. Consequently,

x(t) = El(t)c 1 + E2(t)c 2 (28)

where the two square matrices are given by

1 t t2/2!
£1(t) = 0 1 t

o ::: ::: ... tn-ll(n- 1)! /

••. 2)!

::: i
(29)

and

E2(t) :

t n/n! t,l+ 1 / (/'t Zr- 1 )!

i)!
• • •

• . •

t2'_-i/(2n - 1)!

t2't-2/(2n - 2)!
(30)
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SinceEl(0) = I, E2(0) = 0, and E2(t) is nonsingular for t > 0,

Cl = x(O) (31)
c2 = E_I(T)[x(T) - EI(T)x(O)]

Therefore, the polynomial with n continuous derivatives that satisfies the boundary condition [x(0), x(T)]

is given by

(32)P[t,T,x(O),x(T)] = [El(t ) - Ez(t)E21(T)El(T)]x(O) + E2(t)E21(T)x(T)

which is the optimal solution for a string of n integrators with the quadratic penalty on the input:

f0 T 2 (33)

The polynomial solution has the following two computationaily desirable properties: Suppose that it is

necessary to insert a new control point 0 < T1 < T inside the current interval. That will not change

the solution, since for t > 7"1

P[t,T,x(O),x(T)] = P{t- T1,T 2 - T1,P[T1,T,x(O),x(T)],x(T)} (34)

Furthermore, as can be easily verified, the time variable scales, so that,

El(t/T ) = DTEI(t)DT 1 , E2(t/T) = T-nDTE2(t)DT 1 (35)

where

D T = dia 9 [1,T,...,T n-l] (36)

and, therefore,

P[t, T, x(O), x(T)] = DT 1P[t/T, 1, DTx(O), DTx(T)] (37)

Of particular practical interest is the case of a step of size xl(T):

x(O) = 0 (38)
x(T) = x 1(T)61

where 8 i is a column of zeros except in row i, where it is one. The corresponding solution is

_I[t,T, xl(T)] = xl(T)DTIp(t/T,I,O, fl) (39)

Consequently, properties of the function t _ g:[t,T, xl(T)] can be obtained from the normalized

function 7- _ ¢(7, 1, 1). For example, the maximum absolute value of each coordinate for t C [0, T],

which is of considerable practical interest, is related to that over r C [0, 1] by the simple relation

max[¢i[t , T, x 1 (T)] I = x 1(T)Tl-imaxl_i(w, 1, 1)l (40)

So, a unit step in position for T = 4, which is shown in figure 16, may serve as a standard. The

upper panel shows Xl = x (°) (solid) and x2 = 5:1 = x_ 1) (dotted); similarly, the middle panel shows

2) 3) 4),x . The absolute maxima(x3,x4) = x ,x , and the bottom panel shows (x5,u) = x
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Figure 16. Unit position maneuver for T = 4.

[]x(J)]max, = 5] for unit in for duration T be from theJ 0,..., a step position any may computed
J

corresponding maxima for the case of T = 4 by means of equation (40). The first row M0j(T) in

table 1 gives these maxima for a unit step in position Xl that is accomplished in time T. The second row

in table 1 represents the maxima for the unit velocity step. For this maneuver the boundary conditions

are given by x_l)(T) = 1, xi(T) = 0, i = 2, ...5 and xl(T) is free--it is not matched. Similarly, for

the other rows in the table the state coordinates to the left of 1.000 are not matched; they are "don't
cares."

Table 1. Maxima Mi, j (T) of elementary maneuvers

x v a it /_ a (3)

x 1.000 2.461T -1 9.371T -2 78.74T -3 622.5T -4 15120T -5

v 0.500T 1.000 2.188T -1 7.511T -2 52.50T -3 840.0T -4

a 0.143T 2 0.500T 1 1.000 1.875T -1 5.773T -2 60.00T -3

h 0.033T 3 0.150T 2 0.500T 1 1.000 1.500T -1 6.000T -2

5 0.008T 4 0.042T 3 0.167T 2 0.500T 1 1.000 1.000T -1

The unit velocity v maneuver for T -- 3 is shown in figure 17. The absolute maxima in this case

are given by the second row (first derivative) Mlj(3). For example, [x(5)lmax = 840/81. The unit

acceleration a maneuver for T = 2 is shown in figure 18.
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Figure 17. Unit velocity maneuver for T = 3.
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Figure 18. Unit acceleration maneuver for T = 2.

So far the states were assumed to be unconstrained, but in practice, there may be constraints.

Thus, it may be necessary to stay within a speed limit, v < Vma:c, and impose limits on the acceleration

and higher derivatives. For example, in the case of the Harrier in the helicopter (HEL) control mode,

forward acceleration is accomplished by pitching the aircraft forward, so that, approximately, the forward

acceleration at1 = -gO, where 9 is the acceleration of gravity and 0 is the pitch angle in radians.

Situations arise when it is desirable to limit the pitch angle and three of its time derivatives to some

given values. Pitch acceleration is limited by the capabilities of the pitch moment generator, and pitch
acceleration rate must be consistent with the rate limits, which may be imposed on the pitch channel

actuator servo to prevent rapid hard-over failures. That means that the acceleration and higher derivatives
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shouldbe constrainedasfollows:
Ix(2)l
Ix(3)I
Ix(4)t
Ix(5)I

<9

O_aX

O'll_a3"

ot ).X
(41)

For example, typical constraints, including a speed limit for the Harrier in the low-speed HEL mode,

may be

Iz(

Ix(2

Ix(3

Iz(4

I._.(s

)(3o
12

< 12

12

24

(42)

These limits would be violated if, for example, the maneuver M1 = step forward in 18 seconds were

to be executed as a single segment as shown in figure 19. The maneuver is very smooth, with small

x_2)" and x_3)," but the speed v = x_1)" exceeds its limit of 30 ft/sec. Next an approach for satisfying

constraints is considered.

0 /
40

0

i I t i i _ i i

_------'--'-"_""_1 I I I I1 I

i t J

0

-20 ' ' ' '
0 2 4 6 8

I

10
time (sec)

I I I I

12 14 16 18 20

Figure 19. Unconstrained realization of the maneuver M1.

3.3 Control Cards

As is well known, for reasonable situations with constraints, the optimal trajectory is a concatenation

of segments that are either interior or on the constraining boundary. Strict optimality is not pursued

further since the structure of the overall control system is of primary concern. However, the insight that

the optimal solution consists of a sequence of control points that are connected by polynomials is used.
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In thepresentcaseof astringof integrators,in orderto stayon the(constant)boundaryx i = Ximax,

the higher derivatives of xi must be zero. Consequently, the unconstrained elementary maneuvers listed

in table 2 are considered.

Table 2. Elementary maneuvers

o0k(x, T) get steady position x in time T

o.lk(V, T) get steady velocity v in time T

o.2k(a, T) get steady acceleration a in time T

o._'(d, T) get steady accel, rate d in time T

o._'(b:, T) get steady accel, accel. /i in time T

The lower index on o. indicates the first derivative that is not to be ignored; the upper index

indicates the highest derivative that must be matched. Thus, o.5 indicates that position and velocity are

to be ignored (not matched), and all derivatives of acceleration up to order 3 must be zero at the end of

the interval. Many maneuvers of practical interest may be parsed into the these elementary maneuvers.

For example, the overall goal of the step forward maneuver M1 may be achieved in several different

ways:

(1) The maneuver may be achieved as a single segment (shown in figure 19) that is given by

3,I 1 = o05(Ax, T) (43)

The maxima are given by the first row in table 1" [z_J)]max = AzMoj(T ), Ax = 300, T = 18.

(2) The maneuver may be achieved as a symmetric concatenation of three velocity segments (shown

in figure 20 for T1 = 8, T2 = 2) given by

M1 = cr15(v, T1)o.15(v, T2)o.15(0, T1) (44)

where the duration of the maneuver is

T = 2771 + 712 (45)

and size of the position step is the product

x = (T1 + T2)v (46)

The maxima of velocity and higher derivatives for this maneuver are given by the second row in table 1,

[v(k) Imax = vMI,k+I (T1) (47)

(3) The maneuver may also be synthesized as a symmetric concatenation of seven elementary

acceleration segments (shown in figure 21 for T1 = 4, T2 = 0, T 3 = 2) as follows:

M1 = cr5(a, T1)a5(a, T2)a5(O, T1).a5(O, Ta)'a5(-a, T1)a5(-a, T2)a5(O, T1) (48)
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Thedurationof the complete maneuver is

T = 4TI + 2T2 + T 3

The maximum velocity is

and the final position is

v = a(T1 + T2)

x -- (Yl + T2)(2T1+ T: + T3)a

The absolute maxima of acceleration and its derivatives are given by

[a(k)lmaz = aM2,k+2(T1), k = 0,3

The maxima for the three realizations are compared in table 3.

(49)

(50)

(51)

(52)

Table 3. Absolute maxima for the three realizations of the maneuver AI 1

x v a h fi a (3)

o'_5) 300.0 41.0 8.7 4.1 1.8 2.4

(o'15)) 3 300.0 30.0 8.2 3.5 3.1 6.2

(o_5)) 7 300.0 30.0 7.5 3.5 2.7 7.0

As noted previously, the position maneuver is smooth but violates the speed limit. The other two

maneuvers are quite similar and, as shown in figures 20 and 21, step the aircraft forward 300 feet in

18 seconds without violating the constraints. It may be noted that, as is to be expected, the satisfaction

of constraints requires greater activity in the control u. Of course, the increase may be expected to be

smaller for the optimum solution.

200t ....
100 

0 ! I I I I I I I

20

I I I I I

I I I I

" .............. .. ........ ... i

0 2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 20. The three-segment maneuver M13 = (o'_5)) 3.
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Figure 21. The seven-segment maneuver M17 = (0"_5)) 7.

It is helpful to think of a composite maneuver as a sequence of control cards. For example, the

three-segment maneuver M1 --- (cry5)) 3 may be represented by the sequence C = COCIC2C3 of four

control cards, as follows:

co[ ]x= 0 0 0 0 0 **

IT=8 ]C1-- x * 300 0 0 14

]x * 30 0 0 0 14

x= 300 0 0 0 0 04

The first card Co specifies the initial condition. The second card C 1 commands that the segment is to

last 8 seconds and that the terminal velocity 5: -- 30 ft/sec (variable 1), higher derivatives up to fourth

(variable 4) are to be zero, while the position is to be ignored. The third card C2 commands a 2-second

coast at 30 ft/sec. The last card commands a steady 300 ft (variable 0).

This representation becomes particularly helpful when x is multidimensional. Complex, multiaxis

maneuvers may require many control cards, each with many (e.g., 90) rows of data. In the present

structure for the flight vehicle management system, these control cards are the interface from the discrete

levels to the analog levels. Before expanding on this point, consider the multiaxis case.
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3.4 Coordinate Patching

To be applicable to aircraft, the preceding discussion must be generalized to include multiple axes

and rotations. A slight detour into the methodology of dynamic forms is made to considerably simplify

the discussion that follows. Much more detail is given in reference 3.

A scalar form of order k of a scalar variable of time is defined by the k-tuple consisting of the
variable and k of its time derivatives:

SFk(z) = [x, z(2),,x(k)], x • R (53)

For example, the system in figure 15 with n = 4 may be represented by SF5(xl). Similarly, vector

and matrix forms are given, respectively, by

vrk(v) = (v, iJ, v(2),...,v (k) ), v • R n (54)

and

MFk(M) = ( M,f/I,M(2),...,M (k) ) , M • R nlxn2 (55)

As described in reference 3, sums, products, and other elementary functions are easily extendible to

dynamic forms. Then, more-complicated functions may be built out of the elementary set. Thus, for

example, the possibly time-varying affine map

v = Mu + z (56)

may be raised from order zero to order k as follows:

vFk(v) = MFk(M)* VFk(u) + vFk(z) (57)

_ o

Let a be a three-dimensional, right-handed, orthonormal axis system. The a-coordinates of a

vector :g will be denoted by the column Xa. The attitude of another axis system b may be defined

relative to a by the direction cosine matrix Cba. The coordinates transform according to x b = CbaX a.
t---k

Let the angular velocity of b relative to '_ be denoted by the vector _2ba; its body coordinates are Wba b.

Then the time derivative of the direction cosine matrix,

Cba = S(Wbab)Cba (58)

where, as before, the skew-symmetric matrix, given for any z • R 3 by

S(z) =
0 z 3 --z2)

--z 3 0 Z1

z 2 -- z I 0

(59)
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represents the cross-product operator. The ability to generate direction cosine matrices by a structure

of the type shown in figure 22 is of interest. It is convenient to represent this structure as the rotation

form:

[,, . .. _(2) ,(k-l)]
RFk(Cba) = [Wba'aJbab'aJbab ' bab" " " "%ab ] (60)

o_(k -1)

babt_[_}

°

Figure 22. Rotational form RFk(Cba).

The closely related matrix form is given by

The kinematic equation (58) and

(61)

(62)

where ()T denotes the transpose, provide a nonsingular link between the two forms. The subroutines

for transforming them into each other are denoted as

MFk(Cba) = MF-<RF[RFk(Cba)] (63)
RFk(Cba) = MR>.- RF[MFk(Cba)]

The generalization of the Coriolis' derivative to order k is given by

vFk(vb) = MFk(Cba) . vFk(va) = MF-'<RF[RFk(Cba)] * yFk(va) (64)

This subroutine outputs the b-components v b of _ and the k time derivatives of vb for given a-components

Va and its k time derivatives and the attitude Cba and angular velocity and its derivatives.

The transpose of a matrix form,

[MFk(M)]T= MFk(M T)

Consequently, the inverse of a rotation form is given by

RFk(Cab) = MF>.- RF{[MFk(Cba)] T}

(65)

(66)

is,

It is often necessary to represent rotations in terms of Euler angles in some desired sequence. That

Cba = Eql (oq)Eq2(Ol2)Eq3(Ol3) (67)

30



where the sequence q = (ql, q2,q3) with q2 # ql, q3, and E i is an elementary rotation about axis i.

This representation has a gimbal lock (the Jacobian matrix is singular) at a2 = 7r/2 for a nonrepeating

sequence, and at ]a21 = 0 for a repeating sequence. Since derivatives of Euler angles are needed, an

angle form is defined as follows:

AFqk(a) = ( VFk(a) ) (68)
q

and the subroutine for the forward and inverse parameterizations (away from the singularities) is defined
as:

MFk(Cba) = MF-<AFq[AFqk(aba)]

AFqk(aba) = MF_- AFq[MFk(Cba)] (69)

This algorithm provides a bidirectional link between a direction cosine matrix and the corresponding

angular velocity and its derivatives on the one hand, with the corresponding Euler angles and their time
derivatives on the other.

All these easily coded algorithms are very useful in practice. Now consider a maneuver such

as the transition from VTOL to VATOL, as shown in figure 11. The standard representation by the

nonrepeating sequence q = (1, 2, 3):

Ctr = E123(7) = El(')'l)E2(72)E3(')'3) (70)

which is nonsingular for near horizontal attitudes, becomes singular in the vertical attitude. A repeating

sequence such as p = (3, 2, 3)

Ctr = E323(/3) -= E3(/31)E2032)E3(/33) (71)

is nonsingular near vertical attitudes. To achieve large-angle maneuvers, it is necessary to patch coor-

dinates smoothly. That is easily done by means of the algorithms defined previously.

(72)

Let the coordinate-designating mode variable be denoted by #a. This mode variable may take on

many values, but for the VTOL to VATOL maneuver, two are noted: horizontal attitude (HAT) and

vertical attitude (VAT). Switching from one coordinate system to another is a discrete event initiated by

a change in #a. In the horizontal mode #a = HAT, both sets of coordinates are computed according

to

( AFqk('_) ASq kAFpk(/3)) : ( (7)HP[AFqk (,.f)] ) (73)

That is, "7 is free to move in any preassigned manner while/3 is slaved to the image of 7. On the other

hand, in the vertical mode #a = VAT,/3 is free while '7 is slaved:

(AFqk(7) ) = {Hq[AFpk(/3)] (74)
Z Fpk ( /3 ) _ m Fpk ( /3 ) /
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The coordinate switch may be commanded by means of control cards. For example, consider a sequence

of control cards C .... CiCi+ 1 .... where

C i -_-

T=2

#a = HAT

71 f 0 0 0 0 0 04

72 f 0 10 0 0 0 14

73 f 0 11 0 0 0 14

/31 8 0 0 0 0 0 04

_2 s 0 0 0 0 0 04

/33 s 0 0 0 0 0 04

and
T=7

#a = VAT

71

Ci+1 = "/2
%

s 0000004

s 0000004

s 0000004

f 0000004

f90000004

f 01100014

Control card Ci commands a segment of 2 seconds duration in the horizontal attitude coordinatization

mode #a = HAT, in which the 7s are free to satisfy the indicated terminal conditions: zero roll

(71 = 0), constant pitch rate _'2 = 10 deg/sec, and constant yaw rate "4/3 = 11 deg/sec. The/3s are to be

slaved to the image of the 3's. The next control card Ci+l commands a segment of 7 seconds duration

in the vertical attitude coordinatization mode Pa = VAT. The initial condition to be satisfied by the

/3s are given b.y the slaved /3s of the previous card Ci. The terminal conditions are constant/31 = 0,

/32 = 90, and/33 = 11. The 7s are slaved to the image of the/3s.

As an example of this type of coordinate patching, consider a large-angle maneuver, as shown in

figure 23. The maneuver lasting 40 seconds pitches the time-axis system from zero to 90 degrees and

then back to zero while yawing through the complete 360 degrees. In the vertical position, (t'l _ -K3),

t is tilted about if3 from zero to 3 degrees and back to zero. The complete maneuver is synthesized

with eight control cards. The evolutions of 7 and '_ are shown in the first two panels of the figure. The

Euler angle forms are set to zero within one degree of their respective singularities. The evolutions of

/3 and ;) are shown in the bottom two panels. The 3-degree tilt is shown in the top panel of figure 24.

The corresponding evolution of the direction cosine matrix Ctr may be computed as discussed

previously by means of the algorithm

RFk(Ctr) = { MF>-RF{MF-_AF[AF1k23(_/)]} if #a-- HATMF>-RF{MF--<AF[AF3k23(/3)]} if #a ---- VAT (75)

The angular velocity, angular acceleration, and their derivatives are shown in in the bottom panels of

the figure. The components of a;trt are measures of the rate gyros attached to t. Note that "_, which

looks like yaw rate, becomes roll rate as t becomes vertical and then again yaw rate at the end of
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the maneuver.The 3-degreetilt of {'1 submaneuver has no effect on the roll channel but activates both

pitch and yaw. Finally, it may be noted that, as required, both angular velocity and acceleration are

continuous throughout the maneuver, despite segmentation and coordinate changes.
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Figure 23. Vertical attitude maneuver: Euler angles.
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Figure 24. Vertical attitude maneuver: angular velocity.
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3.5 Transition Dynamics

In the preceding discussion of the coordinate change "7 _/3, there was enough freedom to patch

continuously across the mode switch. That is not always the case. Two very useful coordinatizations of

Ctr, namely the runway path axes RPA and wind path axes WPA, are given in terms of the trajectory

of the origin of t, as follows. Consider an axis system v, defined so that the first unit vector _Ylpoints

along the velocity _' of _ relative to the runway-fixed axes r. In addition, let the total specific force

f °= g- 9f'3 (76)

be in the (_71, _73) plane, pointing up. That is,

=
(77)

Then the attitude of v relative to r Is given by the direction cosine matrix Cvr, whose rows are the
4---4

r-coordinates of v"

Cvr = ( Vlr, V2r, V3r )T (78)

This zero-order computation can be easily raised to order k by means of the methodology of dynamic

forms:

MFk(Cvr) = MF-.< VR[VFk+I(vr)] (79)

which may then be transformed into the corresponding rotation form RFk(Cvr). In the runway path

axis mode (#a = RPA), mFk(Ctr) = mFk(Cvr).

Another frequently used axis system _ is defined in terms of the relative wind.

relative to the average wind is given by
U =_7-_

The velocity

(80)

where _ is the average wind velocity with respect to the runway. The axis system is given by

=
_72 = _l×f/l_71×J_

_3 = _71×u72

(81)

so that the first basis vector points in the direction of the relative wind 9'a rather than in the direction

of _7. In the wind path axis coordinatization mode (#a = WPA), MFk(Otr) = MFk(Owr). Other

variations on this theme are, of course, possible. The problem is that, while it is possible to switch

smoothly from a path-defined mode to an Euler angle mode, the change from Euler angles to path may

be discontinuous because the path is generally not a free variable that can be slaved to an attitude.

However, the discontinuity may be smoothed by means of transition dynamics, as follows. The idea is

to factor the attitude into two rotations, one of which is relaxed to the identity. For example, suppose

that the mode is switched at t = tl from #a = HAT to #a = RPA:

E123(t), for t < tl (82)Ctr = Cvr(t), for tl < t
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Then, without smoothing, the discontinuity at t 1 is

D(tl) = E123(tl)CT.(tl) (83)

On the other hand, if we define

E123(t), for t < t 1Ctr = D(t)Cvr(t), for tl < t (84)

and relax D(t) --_ I, then the transition can be made smooth. This zero-order procedure can be easily
lifted to order k:

{A,IFk(E123), for t < t 1MF#(Ctr) = MFh'(D) * MFk(Cvr), for t I < t
(85)

There are many ways to relax MFk(C) -_ (I, 0,..., 0). One possibility is to express D in terms of

Euler angles 6 in some sequence q and then drive AFq(6)(tl) -* (0,..., 0) by means of polynomial

segments. Another way is to apply a zero-seeking regulator structure. For example, suppose that D is

represented in terms of Euler parameters (e, _/) E R 3 × R:

D = _ + 2_S(e)+ 282(e) (86)

and conversely,

where for any x C R 3,

}[ 1rl = tr(D) + 113
e = _axis(D)/_

(87)

axis[S(x)]: x (88)
The constraint is e2 + _12 = 1, and the representation is singular for lel = 1. These zero-order compu-

tations are easily raised to order k, as follows:

(VFk(e),SFk(T1) ) = MF>-PF[MFk(D)]

MFk(D) = MF-<PF[VFk(e), sFk(r/)] (89)

Associated with the vector part of the parameter form is the three-dimensional string of k integrators,

each

e(k+l) = U (90)

The initial condition is given by

Choose a stable regulator law

[e(tl),... , ¢(k)(tl) ] ----vFk(e)(tl) (91)

u = k [e,...,e (k)] (92)

Then, provided that ]e I < 1, the offset e will decay to zero. The evolution of Ctr for tl < t is then

constructed as follows

SFk(rl) = [1 - VFk(e)2]½

MFk(D) = MF_<PF[VFk(e),SFk(rl)] (93)

MFk(Ctr) = MFk(D). MFk(Cvr)
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By construction there is no discontinuity in Ctr or k of its time derivatives, and Ctr coincides with Cw.

after the transient has died down.

Several useful ways have been developed to coordinatize large-angle attitudes. The generation of

three-dimensional reference trajectories is now considered.

3.6 Output Mode

The coordinate mode, #a, discussed in the preceding section, affects the meaning of the system

state and control coordinates. In this section the output mode, #y, which determines the meaning of the

system output (that is, which variables are to be tracked) is considered. Some of the many possibilities

are the Cartesian, cylindrical, or spherical coordinates of position, or airspeed and path, or, as in the

360-degree roll maneuver shown in figure 14, speed and lateral and normal forces. Many more output

maps are of practical interest. Specifying and switching of output maps may be handled in much the

same way as the Euler angles. Thus, for example, consider a 90-degree horizontal turn maneuver with

100 ft/sec initial and final speeds. The maneuver may be realized by means of the Cartesian coordinates,
as follows:

Mxy: 90-degree Cartesian maneuver

T= O,#a= RPA, py

T = 16.5, #a = RPA, #y

= CAR

V Fl (rr )

VF2(rr)
VF3(rr)

= CAR

VF10>)
VF2(,>)
VFa(  )

f 0100000

f o oooo
f o oooo

f 1000 0 0 0 0 04

f 1000 100 0 0 0 04

f 0 000004

The turn is accomplished with one segment in 16.5 sec. The path is shown in figure 25. The attitude
I--..+

of t is slaved to the runway path axis system (#a = RPA). The corresponding Euler angles a

in the standard sequence q = (1, 2, 3) may be extracted from Ctr. Figure 26 shows the Euler angles,

angular velocity, and angular acceleration of the t system relative to the runway r. Figure 27 shows the

evolution of the ground speed v (ft/sec, upper panel), acceleration + (ft/sec 2, second panel), t-coordinates

of force f[ (third panel), and curvature n (in inverse thousand feet), where

v = k=k=tTrvr
iJ = g

f[ = Ctr(fr +963)/9

= Ild/dt(_)ll/v

(94)
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Figure 25. Cartesian maneuver: path.
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Figure 26. Cartesian maneuver: C_tr (deg), Wtrt (deg/sec), dJtr t (deg/sec2).
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Figure 27. Cartesian maneuver: v (ft/sec), + (ft/sec2), f[ (g's), n (l/kft).

and where 9 is the acceleration of gravity. It may be noted that the ground speed of this maneuver is

not constant; there is a small acceleration into the turn and a small deceleration out of the turn (second

panel). In some cases a constant speed maneuver is preferable. That may be accomplished by means

of the cylindrical coordinates (v, _, h) of velocity:

.{vc°s¢)Vr = /vsih_ (95)

where h = -rr3 is the altitude. The Cartesian coordinates of position and the arc length are, of course,

/:rr(t) = rr(O) + Vr(a)da
(96)

s(t) = s(O) + --]otV((r)d(7

Often it is easier to generate the maneuver in two steps. First the path is "drawn" with some convenient

speed, and the path parameter is changed from time to arc length. Then the path is traversed at some

other speed. This may be accomplished as follows:

First draw the path, as a function of time

(s,_) = [Sl(t),_bl(t)], t C [O,T]

where 61 > O. Next consider s as the independent parameter:

(t,_) = [a(s),/3(s)], s C [sl(0),sl(r)]

where sl[a(s)] = s, and/3(s) = _l[a(s)]. Finally, traverse it with a different schedule

s = s2(t), t C [to, tf]

(97)

(98)

(99)
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namely

(s,¢) = [s2(t),_2(t)] = {s2(t),_[s2(t)]}, t _ [to,tf] (100)

where to = a[Sl(0)] and tf = a[sl(T)]. The problem is to raise this zero-order computation to order
m. That is, the problem is to construct

SFk(_) = _1{_[SFk(s)]} (lOl)

Suppose that for given Sl = a0 the corresponding tl and SFk(sl) are known. Then the evolution

of Sl near the base point (a0,tl) is given by the Taylor series in T,

Sl(t 1 + 3") = S1 -I- 81T -t- • • • q- 81k)Tk/k! (1o2)

This is a polynomial of degree k in r with constant coefficients

This zero-order polynomial may be raised easily to order k:

(103)

sFk(sl) = poly[a, sFk(T)] (104)

The input is SFk(T1) = (-r, 1,0,..., 0) and the output is sFk(sl). The present objective is to invert

the process: given some other evolution SFk(s2), find the corresponding SFk(_-2). Having found that,

the new evolution of _ is given by the polynomial

sFk(¢2) = poly[b, sFk(T2)] (105)

with constant coefficients

b= ( _1, _1,. .. ,1_k)/k! )

The inverse SFk(T2) may obtained in the standard way. (See ref. 3.)

srk(_) = (0,..., o)
9=(_) -1
doi = 1, k

w = {poly[a, SFk(_-)]}k

__(k)= g(s(k) _ w)
end do

(106)

In the special but useful case when both the initial drawing and final traverse are done at constant but

possibly different speeds, _1 = Vl and _2 = v2 = #Vl, respectively, simple scaling suffices:

sFk(¢2) = (@l,#@l,...,#k_b(k)) (107)

For example, consider the following abbreviated control card schedule.
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Myra: 90-degree cylindrical maneuver

T= O, #y = CY L

SF4(s) f 0 100 0 0 0

SF4(¢) f 0 0 0 0 0

SF4(h) / 100 0 0 0 0

T= 5, #y = CYL

SF4(s) f 0 100 0 0 0 14

SF4(¢) f 0 6 0 0 0 14

SF4(h) f 100 0 0 0 0 04

T = 10, py = CYL

SF4(s) f 0 100 0 0 0 14

SF4(¢) f 0 6 0 0 0 14

SF4(h) f 100 0 0 0 0 04

T= 5,#y = CYL

SF4(s) f 0 100 0 0 0 14

SF4(¢) f 90 0 0 0 0 14

SFn(h) f 100 0 0 0 0 04

The speed is held constant throughout the maneuver at v -- 100 ft/sec. At the end of the third segment,

the displacement rr(20)-rr(O) = (1208, 1208, 0) T. A displacement of (1000, 1000, 0) may be obtained

by scaling time by a factor of 1000/1208. The resulting path is shown solid in figure 28, and it may

be compared with the Cartesian path (dotted). The behaviors of the attitude, angular velocity, and

500

10_ 0 500

x (ft)
1000

Figure 28. Cylindrical maneuver: path.

acceleration are shown in figure 29. Figure 30 shows that the speed (top panel) is constant, as expected.

The curvature is smaller for this case than for the Cartesian maneuver shown in figure 27.
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Figure 30. Cylindrical maneuver: v (ft/sec), _ (ft/sec2), f[ (g's), _ (l/kft).
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Often ground speed is of lesser interest than the airspeed. The air velocity is given by

(108)

where/'is the path tangent. Therefore, the ground speed needed to maintain a desired airspeed v a = a,

which may be a function of time, is given by

= J(/'. + a2_ w2 (109)

This equation can be used iteratively to raise the order to SFk(s). Often it is desirable to point the '_

axes into the wind. This maneuver may be done by choosing/'1 in the direction of the air velocity f a

rather than, as before, in the direction of the ground velocity _7.

Figure 31 shows the 90-degree turn in which the airspeed is held constant at va -- 100 ft/sec in the

presence of a constant wind Wr -- (-20, 20, 0) ft/sec. The maneuver is executed in the wind path axis

mode #a -- WPA. It may be noted that, while the ground speed v (solid line in panel 1) varies, the

airspeed va (dotted) is constant at the set value of 100 ft/sec. The second panel shows f[. It may be

noted that only the normal component f[3 (dashed) is active. The Euler angles Oltr degrees are shown
(2in the third panel. Note that, since the axis is pointing into v r = Vr - Wr, the yaw angle O_tr3 (dashed)

starts the turn with -11.5 degrees and finishes the turn with 78.6 degrees. Furthermore, the roll angle

(solid) is not constant in the constant radius segment. The bottom panel shows the angular acceleration

d;trt degrees/sec 2. Note the smaller roll acceleration at the beginning of the maneuver and the larger

value at the end in comparison with the no-wind case shown in figure 29. Finally, the duration of the

maneuver is a little longer, namely 17.35 seconds.

I O0 F ......... '......... '.......... '......... '........... ' ).................... '.......

I

s°F
0 I I I I I I I I
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0

-20
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Figure 31. Fixed air speed cylindrical maneuver (v, Va), f[, C_tr, dJtrt.
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Other possibilities are of practical interest. For example, spherical coordinates of velocity

(#y : SPH)

Vr = ( v cos _ cos 7, v sin _ cos 7, -v sin 7 )T (110)

are frequently used for guiding an aircraft to the airport.

The methodology developed in the present chapter allows one to generate segments in any one

of these many useful representations, and to patch the segments into a smooth, executable maneuver.

Thus, the Guidance Output Trajectory Generator, which is the first block in figure 5, is realized. The

input is a sequence of control cards. The output is the commanded definition and evolution of the

system output yC and the evolution of the operating mode #. So far, the operating mode had two

coordinates, namely #a, which defines the coordinatization of the system state space, and #y, which

defines the state-to-output map. In the next chapter, in which the Guidance State Trajectory Generator

is considered, the third coordinate, the control mode Pc, which specifies how the maneuver is to be

executed, is introduced, and an approach for constructing the guidance state and control (xg, u9), which

produce the desired output yg _ yC, is given.
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4 DYNAMIC INVERSE

In the previous section, a procedure for converting control points into the desired motion of the

output -_d is developed. (The underline denotes a function of time.) In this section, an inversion

procedure that converts _-d into the corresponding motions of the state and control (xg, ug) is developed.

It will be useful to clearly distinguish between two types of inverses, namely the static inverse and the

dynamic inverse.

For the static inverse problem, the following terminology is employed. A direct algorithm f is

given:

u C UcR m, pEPcR q, yEYcR m

f : UxP_Y (Ill)

y = f(u,p)

where u, p, and y are, respectively, the control, parameter, and output. The problem is to construct the

relative inverse algorithm ],

] : YxP--,U

ue = ](Yd,P) (ll2)

so that, for any desired output Yd E Y and parameter p E P, the output error

ey = Yd - f(ue, p) (113)

is sufficiently close to zero.

In contrast, the dynamic inverse problem may be summarized as follows: Suppose that a state

equation and an output map are given:

t E ItcR, xEXcR n, ucUcR m, y6YcR m, pEPcR q

f : XxUxP---+X

h : X x P---+Y (114)

.+ = y(x,
y = h(x,p)

Here, x, u, p, and y are, respectively, the state, control, parameter, and output; f is the flow, and h is the

output map. In this case, the inversion problem is to construct an algorithm 7_, which transforms any

given, suitably restricted, motion of the output -_d and parameter p__,respectively, into the corresponding

motion of the state _x9 and control ug, which satisfy both the state equation and the output map. That

is, the state error equation and output equation error, respectively,

ex(t) = gcg(t)- f[xg(t),ua(t),p(t)] (115)
ey(t) = yd(t) - h[xg(t),p(t)]

must be sufficiently close to zero on the interval of interest It.

In the case of linear systems, the dynamic inverse is given by the particular solution. For example,

consider a linear, time invariant, scalar, nth-order system,

x C R n, uCR, yER

gc = Ax+bu (116)

y : CX
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As is well known, if the system is controllable and observable, then there exists a transformation of

state and control coordinates

z = Tx (117)
V = W/Z -{- 7"37

with nonsingular T and w, which turns the state equation into a simple string of integrators (Brunowsky

form with the Kronecker index t_ = n)

_,k = Zk+l, l<k<n-1
- - (118)

Zn ---- v

For the system considered here, the rows of T and the row vector r are given by

t i = tl Ai-1, 2 < i < n (119)
r = tl An

while the first row of T is found from the n equations

tlAi-lb = 0, l<i<n-1 (120)
tlAn-lb = w

Then, for cT -1 = (ho,..., hn-1), the output is given by

n--1

y = _ hkz_ k) (121)
k=0

But for a given _Td, that is a driven differential equation

0

E hkz k)= yd(t) (122)

(125)

IRe()_)l > cr for some given

n-1

This equation is referred to as the driven zero dynamics of system (116). Its general solution is given

by the sum of the particular solution Zlp and the homogeneous solution Zlh. Rather than the solution

of the usual initial value problem, the "steady-state" (bounded-input-bounded-output) solution of this

equation, which is just Zlp, is desired. Thus, if the desired output is

Yd(t) = sin(wt), t E R (123)

then, of course, the particular solution is given by

Zlp(t ) = Asin(wt + ¢), t E R (124)

where A and ¢ are the gain and phase of the transfer function,

AeJ¢ = 9(jw) = h(jw) -1

The roots of h()_) = 0 are assumed to be far enough from the jw-axis:

o->0.
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Theparticular solutionfor themoregeneralcaseof theforcing term, -_d' may be solved by means

of a convolution. Let g(t) denote the Fourier inverse transform of the transfer function, g(jw). Then

/_oZip(t) = g(t- T)Yd(T)dT (126)

In practice, the integral may be approximated by

FZip(t) = g(t- T)Yd(T)dT
a

where a is only several times the longest time constant 1/a of g.

(127)

The corresponding state and control [Zp(t), Vp(t)] are given by the appropriate derivatives of Zip(t),

and the solution to the inverse problem is given by

xg(t) = T-lzp(t) (128)
ug(t) -=- w-l[vp(t) - rT-lzp(t)]

Note that, since the homogeneous solution is chosen to be zero, it does not matter whether the differential

equation (122) is stable or not, that is, whether the zeros dynamics are or are not minimum phase. On

the other hand, the computation may be noncausal with respect to -_d, requiring a "look-ahead" at t of
a units of time:

Yd(t + T), --a < T < a (129)

The computation of the particular solution for the multiaxis case (u,y E R m) is the same if the

Brunowsky form is rectangular, that is, if all m strings of integrals are of the same length t_ = n/m.

Otherwise, the computation is similar but a bit more complicated, requiring some additional bookkeeping.

In many cases, it is not necessary to obtain a particular solution that satisfies equation (122)

because often the zero dynamics are caused by small, essentially parasitic, effects so that the zeros of

equation (122) are far away from the spectrum of the forcing term Yd. In this report, the cases where

the h0 term is nonsingular and dominant are of interest, while the rest of the terms represent a small,

parasitic perturbation. This distinction is made explicit by means of the parameter e:

h(D,_) = e(hn_l Dn-1 +... + hl D1) + h 0 (130)

For the case of c = 0, the particular solution is just

Zip(t ) = holyd(t) (131)

Then, in view of equation ( 1 !8), and because h0 is constant, (Zp, Vp) may be obtained by differentiation

of the desired output Yd:

Zkp(t ) = holy_k-1)(t), 1 <_ k < n-1

Vp(t) = holy_n)(t)
(132)

The corresponding evolution of the natural state and control coordinates (x 0, u 0) is obtained by inverting

equations (117); that is,

x°(t) = T-lzp(t)

1 :
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This solution is referred to as the pure feedback approximation. Suppose that

xg(t) = x°(t)
ug(t ) = uO(t ) (134)

Then the state equation and output errors are given by the linear version of (115)

ex(t) = 5:g(t) - [Axg(t) + bug(t)]

ey(t) = Yd(t) - cxg(t) (135)

In the absence of zero dynamics, that is when h k = 0 for k > 0, the pure feedback approximation is

exact in that it satisfies both the state equation (ex = 0) and the output (e u = 0). Otherwise, there will

be errors in either one or the other or both equations. Often in practice these errors are completely

negligible. However, when the zeros are closer in and the desired maneuver is relatively fast, the errors

due to the neglected zero dynamics may become significant. In that case, the zero dynamics must be
accounted for.

This approach may be extended to nonlinear, time-varying, multiaxis systems as described in

references 7-10. As in the linear case, it is useful to introduce c into the state equation and the output

map

5: = f(x,u,_)
y = h(x,_) (136)

so that the zero dynamics, if any, may be suppressed from the model by setting e = 0. The pure

feedback solution (_x°,_u °) obtained for the model with e = 0 may be taken as the first approximation

of the inverse. The errors due to the neglected dynamics are given by

e°(t) = gc°(t) - f[x°(t),u°(t), 1]

e_(t) = Yd(t) -- h[x°(t), 1] (137)

An iterative (Picard) procedure for reducing these errors is described in reference 9 and applied in

reference 10. The procedure is based on the convolution (127). In the present report the computation

of the pure feedback approximation, and controlling the resulting errors, is of interest.

A very easy and practical way to satisfy the state equation so that ex = 0 follows: Consider the

servo structure shown in figure 32. The left block represents the approximate inverse 7_° such as the

pure feedback algorithm in which the zero dynamics are suppressed (c = 0), or the pure feedback

approximation corrected by only one Picard step. The right block represents the simulation of the exact

model (c = 1). The input to this block is the control u9; the output is the state xg. So, by construction,

e9 = 0. The tracking error e_ is regulated by the middle block. That is, a regulator law

ugr =k(x°,zg) (138)

is designed and the loop is closed:

u g=u °+u gr (139)

Then it may be expected that, for a reasonable regulator, sufficiently weak zero dynamics, and suitably

restricted class of inputs _Td, the tracking error will be small.
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Figure 32. Servo structure satisfying the state equation.

Next, the key problem of computing the pure feedback approximation is considered.

4.1 Dynamic Inverse of Pure Feedback Systems

In the preceding section, the dynamic inverse of a linear system (116) was considered. The key steps

in the construction of the pure feedback approximation were the static inversion, as in equation (131),

and the differentiation of that inverse, as in equation (132). The computations may be generalized to

nonlinear cases as follows: Consider again a function

x E XcR m, pcPcR q, yEYcR m

f : X ×P_Y (140)

y = f(x,p)

and suppose that this (zero-order) algorithm f

in what follows. The corresponding algorithm

VFk(y) =

That is, equation (141) is an algorithm whose
the vector form

vpk(x)

and similarly for the parameter p. The output

vFk(y)

Inversion of this algorithm is desired, so

VFk(p) the new algorithm produces the

has been raised to arbitrary order k, which is a key step
is denoted as follows:

f[VFk(x), VFk(p)] (141)

input consists of x and k of its time derivatives, namely

= (x,5:,...,x (k))

of the algorithm is y and k of its derivatives

= [y,_),...,y(k)]

(142)

(143)

that for given evolution of the output VF k(y) and parameter

required input VFk(x).

Now, suppose that for f in equation

interest, and that the inverse algorithm f

]
X c

ey

(140), the Jacobian matrix fz is nonsingular in the region of

: YxP---_X

= ](vd, p)
= Yd-- f(xC,p) = 0

(144)
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is available. This zero-orderinversemay be raisedto order k, as follows. For k -- 0, the zero-order

inverse (144) computes the base point:

x = ](y,p) (145)

At that base point, the first derivative of y is given by

_t= fxgC + fp{O= {f[(x,O),(p,[9)]}l + fxgC (146)

where (x, 0) denotes the vector form of order one in which the first derivative is zero. The subscript 1

denotes the first derivative of the variable, namely,

{VFk(y)}l = _t (147)

and it is evaluated by the algorithm given in equation (141), the vector form of f(x,p). Similarly, for

the second derivative

= fzgc + fx£: + ]'pP + fpi5 = {f[(x,:/:, 0), (p,,5,_)]} 2 + fz_ (148)

and so on for higher derivatives. Hence, the following algorithm for passing derivatives through an
inverse:

x = ](v,p)
VFk(x) = (x,O,... ,0)
do j = 1, k (149)

x(J) = fx 1 [y(J) - {f[VFJ(x), VFJ(p)I}j]

end do

It should be noted that, remarkably, only the base point x and the Jacobian fx at the base point are

needed to generate the derivatives of x from the derivatives of y and p.

Next, consider the construction of a dynamic inverse as in equation (114) for the special case of

pure feedback systems. Later in the present report it will be shown that, for the purposes of guidance,

the following model may be used to approximate many aircraft types. (See figure 36.) In this model,

the structure of the multiaxis state, control, and parameter is given by

Xl,X 2 E R nl , x3,x4,u E R n2, p E R np (15o)

with n2 _> nl. The state equation is of the following form with sufficiently smooth flows fi.

Xl = fl(Xl, x2, O, O, O, p)

_2 =f2(xl, x2, x3, O, O, p)
x3 =f3(xl, x2, x3, x4, 0, p)

x4 =f4(xl, x2, x3, x4, u, p)

(151)

The structure of the multiaxis output is given by

Yl E R nl, Y2 E R n2-nl (152)

with the sufficiently smooth output map

0 000Y2 h2(xl, x2, x3, 0, 0, p)
(153)
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The block diagramof the model is shownin the upperpart of figure 33. The heavy lines are n2-

dimensional. Note that, disregarding the parameter p, there are no lines bypassing integrators in the

forward direction. Hence there are no zeros. There is a new (canonical) set of coordinates of state and

control related to the natural state and control (x, u) by the nonsingular transformation T, in which the

system takes the particularly simple (Brunowsky) form shown in the bottom of the figure. There is a

bundle of nl strings of integrators, each four integrators long, and another n2 - nl dimensional bundle

n2 nl

Yl • Rnl

T

,/,

"_ Y2• Rn2-nl

Ira, Yl • Rnl

Figure 33. Pure feedback model of aircraft.

of strings, each of length two. The inverse transformation 7_ converts the Brunowsky form back into

the natural representation. The construction of the dynamic inverse is equivalent to the construction

of 7_: the evolution of the output [VF4(yl), VF2(y2)] and parameter VFa(p) is transformed into the

corresponding natural state and control (x, u). Both the inverse T and the direct T transformations are
constructed as follows:

For the construction of 2?, assume that VFk(yl) and vFk-2(y2) are given and that all the functions

and their inverses have been raised to sufficient order, as discussed previously. Then from the inverse

hl of hi, the derivatives of xl are:

VFk(xl) = _tl[VFk(yl),O,O,O,O, VFk(p)] (154)

and consequently k- 1 derivatives of 21, namely vFk-l(jcl). Then, inverting the first line of the state

equation (151) gives the derivatives of x2:

vFk-I(x2) = ]1 [vFk-I(xl), vFk-I(xl),0, 0, 0, vFk-I(P)] (155)

5O



and VFk-2(Sc2). Next, since there are n I equations from ]'2 and n2 - nl equations from h2, the

determination of the n2 elements of xa requires the simultaneous inverse of (f2, h2) with respect to x 3
to produce the derivatives of x3:

vFk-2(x3) = (f2_2)[VFk-2(Xl), VFk-2(x2), vFk-2(jc2),O,O, vFk-2(p)]

and vFk-3(Sc3). Similarly for x 4 and u:

(156)

vFk-3(x4) : ]3[vFk-3(Xl), vFk-3(x2) , vFk-3(x3) , vFk-3(jc3),O, VFk-3(p)]

VFk-4(u) = f4[VFk-4(Xl) , VFk-4(x2) , VFk-4(x2), vFk-4(x3), VFk-4(5:4), vFk-4(p)]

(157)
At this point, the function

_/" : (l_nl )k+l × (Rn2-nl )k-l × (Rnp)k+l _ (Rnl )k × (Rn2)k-l × (Rn2)k-2 × (Rn2)k-3 × (Rnl )k-4

(158)
which maps the desired output and some of its derivatives into the corresponding state and control, and
some of their derivatives has been constructed:

_/- [gFk(yl), gFk-2(y2) , vFk(p)] : [vFk(xl), vFk-I(x2) , wFk-2(x3) , wFk-3(x4), vFk-4(u)]

(159)
The multiaxis dynamic inverse algorithm 7_ with k = 4 that is desired is contained in ")-. The state and

control (x, u) are given by the zero-order entries of the output of "-)-,namely,

(x, U) = T[VF4(yl), gF2(y2), gF4(p)] = {_]" [VF4(yl), VF2(y2), VF4(p)] }0 (160)

It is also very useful to be able to go the other way, that is, to have the direct dynamic map T which

transforms the state and control (x, u) into the Brunowsky canonical coordinates VF 4 (Yl) and VF 2 (Y2).

This algorithm may be constructed as follows: From the given state and control [VF°(x), VF°(u)],

parameter VF4(p), and the state equation is obtained

vFl(xi) = fi[VF°(xl), VF°(x2), vFO(x3), VF°(x4), vFO(u), vFO(p)], i = 1, 4 (161)

then

then

and finally,

VF2(xi) = fi[vFl(xl), vFl(x2), vFl(x3), vFl(x4),O, vFl(p)], i = 1,3 (162)

VFa(xi) = fi[VF2(xl), VF2(x2), VF2(x3),O,O, VF2(p)], i = 1,2

VF4(xl) = fl[VF3(xl), VF3(x2),O,O,O, VF3(p)]

The outputs are given by

(163)

(164)

VF4(yl) = h 1 _VF4(xl),O,O,O,O, VF4(p)]

VF2(y2) = h2 VF2(xl), VF2(x2), VF2(x3),O,O, VF2(p)]
(165)
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Thus,the function

'T: (Rnl) 2 x (Rn2) 3 x (RnP) 4 _ (Rnl) 4 x (Rn2-nl) 2 × (Rnl) 4 × (Rnl) 3 x (Rn2) 2 x R n2 (166)

which transforms the natural state and control (x, u) and the evolution of the parameter VF4(p) into

the output and state rate and some of their derivatives, has been constructed.

"-1"( x, u, VF4(p) ) = (VF4(yl), VF2(y2), VF3(:rl), VF2(x2), VF1 (x3), VF0(:_4) ) (167)

The transformation T from the natural state and control (x, u) to the canonical control is just the

projection/91,2 of T on the first two slots of its output;

[VF4(yl), VF2(y2)] = T [x,u, VF4(p)] = P1,27- [x,u, VF4(p)] (168)

It should be noted that the time derivatives of the outputs Yl and Y2 are obtained without differentiating

either the state x or the control u. Both the forward map T and the inverse 7_ differentiate known

functions; neither differentiates signals.

The preceding discussion may be summarized by means of the block diagram in figure 34, as

follows. The system _ = f(x,u,p), which appears multiaxis, nonlinear, and time-dependent in its

natural coordinates (x, u), becomes a simple collection of decoupled strings of integrators when viewed

through the coordinate transformations T and T.

VF4(yl) _ (_,0)

VF4(p) ] p _[ k = f(x,u,p)

VF4(y,) _ (x,u) lVF2(y2) _ID,-

Figure 34. Linearization of pure feedback systems.

In the following discussion an aircraft model that will be considered basic for the purposes of

guidance is developed. Next the notion of aircraft control modes is introduced. Then a procedure for

computing the pure feedback solution (x °, u °) for any of the many possible control modes is presented.

Finally, a general structure of the regulator is developed. The discussion is illustrated by applications

to the Harrier aircraft. It should be noted that the procedure is general and applies to many types of

aircraft and helicopters.
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4.2 Aircraft Model for Guidance Purposes

The model developed in the second chapter is summarized and extended as follows. As before, let
4-'-*

the runway-fixed axes and body-fixed axes be denoted by '_ and b, respectively. Let rr and Vr denote

the runway coordinates of the aircraft position and velocity relative to the runway, respectively. Let the

attitude of the aircraft relative to the runway be denoted by the direction cosine matrix Cbr, and let the
<---4

body coordinates of the angular velocity of b relative to _ be denoted by Wbr b. The structure of the

rigid-body state is chosen to be

xw E Xw C (R3) 2 X [SO(3) × n 3]

x_ = ( rr, vr, Cbr,Wbr b)
(169)

The structure of the control is

u E U C (R3) 3

u = (Um, Up, Uf) (170)

where urn, Up, and uf are the moment control, power control, and configuration control. In addition,

there are the parameters with the following structure and interpretation.

p C PcR3xRxR

P = (wr, W, OT ) (171)

where wr represents the wind in runway coordinates, W is the aircraft weight, and 0 T is the temperature

of the air. The runway and body coordinates of the relative air velocity are, respectively,

a
V r -_- V r -- W r

V_ = Cbrvar (172)

The input to the force and moment algorithm has the following structure and interpretation

x b E X b C U x Xw x P

x b = ( u, xa_, p ) = ( Urn, Up, u f, rr, Vr, Cbr, Wbrb, Wr, W, 0r ) (I 73)

The output will be expanded to include several other variables of interest:

Yb e Y'b= (n3) 5
Yb = (mb, mr, fb, ar,V ) (174)

In the interpretation, the entries are body and runway coordinates of the generated specific moment,

body coordinates of the specific force, runway coordinates of acceleration, and the body coordinates of

the air velocity. Note that the coordinates of Yb are not independent. Ultimately, an independent set

will be associated with each operation mode.

The algorithm specific to a particular aircraft is the function

F b • Xb--_yb

Yb = Fb(Xb) (175)
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On occasion the three-dimensional (3-D) components of the algorithm F b,

Fb = ( F_ _b,_mr"b , Ffb, F_r,F_ 'b ) (176)

will be needed. Next a pair of integrators are added in front of power and configuration controls (Up, u f)
in order to enforce continuity in these controls and their rates. The result is the aircraft model shown

in figure 35.

u m

Up

uf

p

Figure 35. Block diagram of the basic aircraft model.

The model is quite an accurate and general representation for the purposes of designing aircraft

guidance systems. The representation of attitude by means of the direction cosine matrix Cbr is not

limited to small angles. On the other hand, the presence of the direction cosine matrix makes the state

space non-Euclidean. Furthermore, for certain aircraft maneuvers, and in certain patches of the state

space, it is necessary to represent the aircraft attitude in terms of Euler angles in some given sequence.

Now such state space coordinate changes are considered.

4.3 Intermediate Axis System

The usual procedure is followed; an intermediate axis system, denoted here by t, is introduced,

and the aircraft attitude, Cbr, is factored into two rotations,

Cbr = CbtCtr (177)

where Ctr may be a large-angle rotation, but Cbt is small enough so that the following Euler expansion

may be always assumed to be nonsingular:

Cbt = E2 (abtl) E3 (O_bt2) E1 (O_bt3) (178)
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Several examples of parameterizations of Ctr have been given in section 3. There the mode variable

/-za was introduced and the horizontal attitude mode HAT, vertical attitude mode VAT, runway path

axes mode RPA, and wind path axes mode WPA were discussed.

With respect to the small-angle rotation Cbt, the angles O_btl, abt2, and abt3 are pitch, yaw, and
_ (--4 +--+

roll angles of the b-axes relative to the t -axes. When t and b are selected to be the wind axes and

body axes, respectively, these angles become the angle of attack, negative of the sideslip angle, and the

roll angle of b.

Whatever the interpretation of the two factors of Cbr, the force and moment generators are needed

in terms of the Euler angles _bt of the small rotation Cbt instead of the composite rotation Cbr.

The Euler angles abt and direction cosine matrices Cbr and Ctr as well as their derivatives to order

k are easily related to each other by means of the dynamic forms. The angle form

and the rotation form

,dk) )AF_ = ( abt ' &bt, " " , _bt (179)

,(k-l) ) (180)

may be converted into RFbkr by first converting the angle form into the corresponding rotation form by

means of the algorithm RF -4 AF and then multiplying by RFtkr:

RFbkr = RF -_ AFq(AF_t ) * RFtkr (181)

Conversely, suppose that RFbkr and RFtkr are given. Then the corresponding angle form is given by

AF_ : RF >- AFq [RFbkr * RFrkt]

where RFrkt is the rotation form for Crt = C T, the transpose of Ctr.

(182)

Consider now a new representation of aircraft rigid-body state.

Xa C Xa C (R3) 4
(183)

which is obtained from xa_ by replacing (Cbr , Wbrb) by (Ctbt , &bt). The two sets of variables are related

by the special case of the algorithm described previously:

(abt ' a_ ) ) = RF ;,- AFq[RF_r* RFrlt]

(Cbr,Wbrb) = RF -< AFq(AF_t ) * RFtlr
(184)

The main advantage of the new state space Xc_ is that it is (locally) unconstrained, whereas the old state

space X_ has the orthogonality constraint Cbr CT = 1.
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It is alsodesirableto expandthe force andmomentgeneratoroutput as follows.

vt e Yt c (R3) 7
(185)

yt = (rob,m,_,mr, ft, fb,at,v_)

where ms is the second time derivative of abt, and ft is the specific force in the t coordinate system,

namely,

mc_ = & = {RF >- AF231 [RF/_r * RF2rt]}2 (186)

Note that, whereas m b and mr represent the specific moment vector, mc_ does not. Also, the subscript

231 represents the Euler sequence in equation (178). The new model of the force and moment model

algorithm will be denoted by Ft:

X t C X t C V X Xoz x r __[SO(3) x _ .l(/_3)2j X P

xt = (u,x_,RFt2r,p)
Ft : Xt---+ Yt
Yt = gt(_t)

(187)

The term in square brackets is the domain of the second-order dynamic form RFt2r of the intermediate

axis system. The (3-D) components of Ft will be grouped and denoted as follows.

F,= ( r,y, d', d , rr, F2) (188)

The rigid-body state equation in the new coordinates becomes

?;r _ Vr

Or = F[_r(u, xa, RFt2r,p)

-- t t ,xa,

(189)

The system is shown in block diagram form in figure 36. The computations of the body direction cosine

matrix Cbr, body angular velocity, and acceleration RF_r are also shown in the diagram.

The following list summarizes the interpretation of the variables:

u =(urn, up, ui)

X b = (urn, Up, u f, rr,

Xt ---- (urn, Up, u f, rr,

Yb = (m b, mr, fb, ar,

Yt = (m b, ma, mr ft,

Vr, Cbr, Ogbrb_

Vr, OLbt, 0_ ) ,

v_)
fb, at, v_)

p)
err _ aJtrt Wtrt , P)

(190)
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Figure 36. Alpha guidance model of the aircraft.

In a simulation, the initial conditions on the integrators in figure 36 and an evolution of all the inputs

are given, and the simulation output is the evolution of all the states and various functions of the states.

In a typical guidance problem, the evolution of the aircraft position rr is given, and the problem is to

fill in all the rest of the variables in the diagram. There are many ways to do that. Just which of the

solutions is actually wanted and what additional information is to be provided is defined by the control

mode. This mode is discussed next.

4.4 Control Modes

Now, the objective in this report is to construct pure feedback approximations of the inverses of

the aircraft equations of motion. Consider, again, the model shown in figure 35. Suppose that at each

instant of time t the desired evolution of aircraft position VF4(rr) is given. Going upstream, that is to

the left in the diagram in analogy with equations (155) and (156), the desired velocity VF3(vr) and the

desired acceleration VF2(ar) are obtained. The force generator F_ r is analogous to f2 in figure 33,

except that F_ r may not be of the pure feedback type. To proceed further to the left, it is necessary

to obtain a relative inverse of F_ r. But relative to what? That is defined by a new discrete variable,

namely the control mode, #c. For example, suppose that the test aircraft, unlike the Harrier, has in

addition to throttle and nozzle a side force controller, so that the power control Up has complete, 3-D

control of force. Then the aircraft rotation and translation may be decoupled within reasonable limit.

That is, in addition to specifying the motion of the center of mass by VF4(rr), the desired rotation

RF4(Cbr) can also be specified. Then, assuming that the configuration VF2(uf) and other parameters
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VF2(p) are given, the inverse of F_ r relative to VF2(up) and the inverse of the moment generator

F_ b relative to the moment control VF2(um) can be generated. In particular, the controls (urn, Up)

are given by the six-dimensional static inverse of both moment and force functions. That is,

tm= -F[nb(mb, ar, uf , rr, vr, ebr,Wbrb,P)

tp = _r (rob, at, u f, rr , Vr , Cbr, Wbr b, p)
(191)

so that

m b = F_b(tm, tip, u f, rr, Vr, Cbr, Wbr b, p) (192)

ar = Fgr ( tm, tp, Uf , rr, vr, Cbr, Wbrb, P)

Inverses such as those in equation (191) are sometimes referred to as trim maps. This particular zero-

order trim map can be raised to any order by means of dynamic forms, as discussed previously in the

algorithm (149). At this point the dynamic inversion of the model in figure 35 has been completed by

obtaining VF2(um) and VF2(up). The inverse model is shown in figure 37. This control mode will

be designated by the mnemonic #c = DFC for "direct force control."

ar

u_(2)_ uO)_

rn b

;°

Vr

Figure 37. Direct force control (DFC) mode.

Another very useful control mode is the direction cosine control, Pc = DCC. For example, the first

step in the recovery from a severe atmospheric disturbance may be to recover the aircraft attitude and,

only after the attitude stabilizes, to proceed to recover the trajectory. In this mode the desired rotation is

specified at each instant by the rotation form RF2(Cbr); the power and configuration controls VF2(up)

and VF2(uf) are driven according to a preassigned schedule. In this mode the trajectory VF2(rr) is

a dependent variable. The corresponding trim map is simply the 3-D moment trim:

Um = F_nb(mb, Up, u f, rr, Vr, Cbr, Wbrb, p) (193)

so that

= F_nb(tm, Up, uf, rr, Vr, Cbr, Wbrb,P)mb (194)
ar = F/_zr(gm, Up, u f, rr, Vr, Cbr, Wbrb, p)

The composite algorithm producing force subject to moment trim will be denoted with an overbar, as
follows:

ar = ff'_r (mb, up, u f , rr, vr, Cbr, Wbrb, P) = F_ r o _nb (195)
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wherethe last term meansthat the algorithm /_nb is called first and then algorithm F_ r. The DCC

control mode is useful, not only for attitude maneuvers but also for the design of other guidance laws.

This mode may be interpreted as a nonsingular change of control coordinates from the natural moment

control variable Um to the new control variable m b, namely, angular acceleration. The corresponding

aircraft model is shown in figure 38. The natural moment control Um is a dependent variable, which is

(2) _"_H Up(l)

U P ..['_ U11)Uf (2)

mb

/./c

p ._

II,

fl::;°

Figure 38. Direction cosine attitude control (DCC) mode.

computed by the moment trim algorithm/6,gnb. The DCC mode provides a very convenient and realistic

procedure for the suppression of zero dynamics. A pure feedback approximation of the force model

may be obtained by evaluating the moment-trimmed force with m b = _Zbrb = 0, namely,

a 0 = F_r(O, up, uf,rr,vr, Cbr,O,p) (196)

The error due to the suppression of the effects on ar of Um and Wbr b is

ear = ff_r(mb, Up, uf, rr,vr,Cbr,Wbrb,P)- F_r(O, up, uf, rr, vr, ebr, O,P) (197)

The present report is concerned with cases for which this error is small.

Still another very useful mode is based on the alpha control mode shown in figure 39. Consider

the Euler angle control (EAC) mode Pc = EAC, in which the moment function Ftmc_ is inverted with

respect to the moment control urn.

urn ---/_'t mc_ (mc_, Up, u f, rr , Vr , O_bt, &bt , Ctr , Catrt , d_trt , P) (198)

The result is shown in figure 39. The composite algorithm producing the moment-trimmed force is

denoted, as before, with an overbar

_[n_ = F/to [._na (199)
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Figure 39. EAC mode.

The pure feedback approximation of the force is

fO = _nc_(O, up, uf,rr,Vr,O_bt,O, Ctr, O,O,p) (200)

The action of the control mode may be described in general as follows. Consider the expanded

force and moment algorithm Ft, as defined in equation (188), with input zt and output Yt,

Yt = Ft(xt) (201)

Suppose that some coordinates of Yt are labeled as independent 'i' and the remainder as dependent 'd.'

Similarly, let some coordinates of xt be labeled as active controls 'c' and the remainder as parameters

'p.' Each such labeling defines a control mode, provided that the number of independent coordinates

equals the number of active control coordinates, which is the dimension of the control mode. The

algorithm Ft for computing the corresponding partial inverses is given by

(3ct,gt) = (202)
IlY2- Ft( t)ll ,c <_ e

The first input x_' contains the initial values for the coordinates of xt that are designated as active controls;

the remainder of xt contains the parameters p. The second input y_' contains the target (desired) values

for the independent coordinates of Yt; the remainder of Yt containing the dependent coordinates is

ignored. The third input Pc, the control mode, designates which coordinates are which. The algorithm
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fills in the locations of d;t designated as controls and locations of Yt designated as dependent. Table 4

contains several practical examples of control modes.

Table 4. Example control modes

#c mb ma mr ft fb

S I M ddd

DCC iii

EAC ddd

DFC iii

HAR ddd iii

VAT ddd ii_

HEL ddd iiz

CFY ddd ii_

CFB ddd iiz

CFF ddd iiz

CFX ddd ii_

CFZ ddd iiz

ddd ddd ddd ddd

ddd ddd ddd ddd

iii ddd ddd ddd

ddd ddd dd_ ddd

ddd

ddd

ddd

ddd

ddd

ddd

ddd

ddd

m ddd

_ ddd

_z ddd

zlz did

zzz ddd

zzz did

iid did

dii did

vg um up u I
ddd ddd ppp ppp ppp ppp

ddd ddd ccc ppp ppp ppp

ddd ddd ccc ppp ppp ppp

iii ddd ccc ccc ppp ppp

ddd ddd ccc cpc ppp ppc

ddd ddd ccc cpp ppp ccp

ddd ddd ccc cpp ppp cpc

ddd ddd ccc cpp ppp ccc

ddd did ccc cpp ppp ccc

ddd ddd ccc cpp cpp pcc

ddd ddd ccc ppp ppp ccc

ddd ddd ccc ppp ppp ccc

Example 1: Pc = SIM, the simulation mode. In this mode all coordinates of input xt are

parameters, and all the output Yt is dependent. There is nothing to invert. That is, SIM simply invokes

the forward map Ft.

Example 2: Pc = DCC, the previously described direction cosine attitude control mode. In this

mode, m b is designated as independent and Um is the active control.

Example 3: Pc = EAC, the previously described Euler angle attitude control mode. In this mode,

the independent output is rna and the active control is urn.

Example 4: Pc = DFC, direct force control mode. As already described, this mode requires

a six-dimensional inversion. Both angular and translational acceleration (rob, ar ) are given, and the

inverter finds the required (trim) values of the moment and power controls ( urn, Up ).

If these four modes were the only ones of interest, the trim problem would be solved. But, in fact,

most control modes of practical interest lead to more-complicated inversion problems. Several such
cases are described.

Example 5: #c = HAR. This is the Harrier mode, in which the direct side force in not available.

It is treated as a parameter, Up2 = 0. The active control is five-dimensional: full moment control,

plus throttle and nozzle. The active control has direct access to first and third components of the body

coordinates of the total force, fb. Full control of fr is achieved by tipping the aircraft. That is, one of

the attitude degrees of freedom is used for control. In the HAR mode, that degree of freedom is the
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roll (abt3) channel, while the pitch (abtl) and yaw (abt2) channels remain free parameters. The relative

attitude is represented by Cbt = E2(abtl)E3(abt2)El(abt3).

Example 6: Pc = VAT. This is the vertical attitude control mode, in which the aircraft is sitting

on its tail. The force is controlled by the thrust and the pitch and yaw channels. The force balance must

be achieved by means of the throttle Upl and the relative pitch and yaw angles olbt 1 and o_bt2, while the

relative roll angle _bt3 acts as a parameter: in the VAT control mode the aircraft may execute an inde-

pendent roll schedule _-_-bt3.The relative attitude is represented by Cbt = E 2 (abt 1)E3 (abt2) E1 (°lbt3)"

Example 7: Pc = HEL. This is the helicopter mode, in which neither the direct side force

controller nor the nozzle is available for active control. Only the full moment control and throttle

(collective in helicopters) are active. Two additional degrees of freedom for complete force control are

provided by roll and pitch channels, while the yaw channel remains free. The force balance is achieved

by manipulating the throttle (or collective) Upl and the relative pitch and roll angles Olbt1 and Olbt3,

respectively, while the relative yaw angle OLbt2 is treated as a given parameter.

Example 8: #c = CFY. This is the conventional (high-speed) cruise control mode. The thrust

is mainly in the direction of the longitudinal axis bl of the aircraft. The direct force control is the

throttle. All three attitude channels are used for control purposes: pitch and roll to provide the two

additional degrees of freedom for complete force control. Yaw is used to maintain the body side force

fb2 near zero. The seven-dimension inversion computes the moment control, throttle control, and the

three relative Euler angles: (urn, Upl, O_bt).

Example 9: The CFB mode is also seven-dimensional, but it is the side air velocity v_2 that is

externally specified (usually zero).

Example 10: In the CFF mode, flap Ufl is manipulated to obtain a given angle of attack abt 1.

The last two entries in the table are modes for which the throttle is not available for control; it is

being moved between its limits or sitting on one of them.

Example 11: The CFX, conventional flight X force control mode, is essentially an airspeed

control mode. The independent force components are

( ftl, ft2, fb2 ) (203)

The normal force channel fta is not controlled; it is a dependent variable so that the climb rate Jz is not

controlled directly.

Example 12: On the other hand, in the CFZ mode the independent force components are

( ft2, ft3, fb2 ) (204)

while the lon.gitudinal channel ftl is not controlled. This is a climb rate control mode in which a given

altitude rate h(t) schedule is being executed, while the airspeed is not directly controlled.

These examples illustrate the fact that there may be many control modes to consider in a complete

design of the guidance subsystem. Each mode generates a specific inversion problem. Furthermore, it
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is desirable to be able to easily add new control modes, without having to redesign the whole algorithm.

In the present approach, a new mode may be added by simply entering a new line in the control mode

table. We use a standard variable dimension Newton-Raphson inversion algorithm. The labels in the

control mode table are used to rearrange the input to this standard algorithm by storing the coordinates

of y_' labeled as independent in the head y_ of the standard output, y*; the dependent part is placed in

the tail y_ of y*. Similarly, the control coordinates of x_' are placed in the head x_, of the standard

input x*, and the parameters in the tail x_,. For a valid control mode, the Jacobian Oyi/Ox C is always

nonsingular in the region of interest. When the standard inverter reaches the threshold, then the output

(d:, _)) is redistributed according to the labels into (._t, _)t). If the partition functions are defined by

(xc,xp) = _-x(xt,m), xt = _xl(Xc,xp, m)
(YI,YD)= 7ry(xt,#c), Yt = 7ryl(yI, YD,#c)

Then the multimode (direct) function for the standard inverter is given by

(205)

In this fashion a single static inversion algorithm for any valid control mode is obtained,

(206)

(_t _t) St(x;, *, = Yt , Pc) (207)

The parameter e is introduced in order to be able to suppress zero dynamics, if any, as follows.

F_ x* * _)= { St(x;,v;,p_)( t,yt,pc, _,t(x_,y_,Pe)mb:a_brb=0
if e= 1

(208)
ifc =0

Jr • • 0) computes the force subject to the constraint that both angular acceleration Wbr bThat is, F t (xt , Yt , Pc,

and angular velocity C%rb of the aircraft relative to the runway are zero.

The F: algorithm is quite powerful. For example,

(xt, Yt) = Ftt(xt, y2, 8IM, 1) (209)

reproduces the exact simulation. In this trivial case, there is only one call to Ft and no inversion. The

input x_' is copied without change into :_t. The input y_ is ignored, while the output _)t = Ft(xt).

The pure feedback approximation of the forward map Ft corresponding to equation (200) may be
obtained with two calls:

(:h, _)t) -t • •
= Ft (xt'Yt'SIM'l) (210)

(xO, yOt) = r_(d:t, gt, eAC, O)

The mc_ component of Yt is the exact second derivative of the Euler angles, rhc_, while the ft component

of yO is the pure feedback approximation fo. The resulting force error

f(= ft- ft 0 (211)

In the absence of zero dynamics, that error is bounded by the trim error bound e. This inverter error

will henceforth be largely ignored.
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The purefeedbackinverse of the force generator is obtained with two calls:

¢xO,yo) = F: y;, ,c, o)
= xO •t_ T/2 _Tnoz

Fttx t * EAC, O)(:_t,_lt) = t _ t,Yt,

(212)

The first call trims the aircraft to the desired force fo = ft* by manipulating the active force controls

as specified by the control mode #, but with angular acceleration and angular velocity held at zero.

The resulting moment control is uO_, and the power and configuration controls are (u0p, u._). Then x 0

is copied into x_, except that x_ contains the true angular velocity &bt. The second call trims the

moment control for the specified angular acceleration m_ and angular velocity &it, disregarding force

balance. The overall result is the exact moment control tim for the given angular acceleration and

angular velocity, the pure feedback values u 0, u_, and _t for the given ft*, and the exact/t. The force

error due to the neglected zero dynamics is, again,

f[= ft- f 0 (213)

assuming a perfect inverter.

The final step in the construction of the pure feedback approximation of the multimode dynamic

inverse _0 and direct T O is to raise the (zero-order) F; algorithm to order two. As described previously,

that step may be done routinely by means of dynamic forms. The result is shown in the following block

digrams. Figure 40 shows the pure feedback approximation _0 of the exact inverse 2h. The function
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Figure 40. Pure feedback approximation _0 of the inverse map 2_.
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F;is the multimode static inverter, as defined by equation (208) raised to arbitrary order. The input to

the inverse map is the mode #, e = 0, which cuts the zero dynamics, order k = 2, and second-order

dynamic form of x_', namely DF2(x_), and second-order vector form VF2(y_). The output of this

call to F t is the filled-in DF2(x_) and VF2(y°). The next step is to copy the zero-order components

DF°(z_) into DF°(x_), and copy the first and second derivatives of C_bt into the appropriate slots of

x_, and similarly with &trt and Wtrt. Finally, the last call to Ft performs the exact moment trim. At

this point the pure feedback inverse 7_° has been constructed, since the given dynamic forms have been

transformed into the corresponding state and control.

The pure feedback direct algorithm T ° , shown in figure 41, is the reversal of the preceding algo-

rithm. The first step is to compute the exact angular acceleration _bt from the given state and control.

Next, the second-order angle form AF2(_bt) is assembled, and the pure feedback static inverter is

called first with order zero. The resulting acceleration _r is loaded into VF2(rr) and VFl(vr). Then

Ft is called again, but to order k = 1, and the process is repeated once more. Finally, the output,

DF2(x °) and VF2(y°), is computed. At this point T ° has been constructed, since the state and control

have been transformed into the corresponding dynamic forms. Note that the approximate transformation

T ° suppresses (blocks) the effects of zero dynamics. The effects of these two transformations may be

summarized with the help of the block diagram in figure 42.
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Figure 41. Pure feedback approximation T o of the direct map T.
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Figure 42. Pure feedback approximation for aircraft guidance.

The system

_c = f(z,u,p,O) (214)

is viewed through _0 and T o as a decoupled string of integrators (see bottom of figure 33). There will

be deviations from this Brunowsky form if there are zero dynamics present. The control of such errors

is considered next.

4.5 Guidance Servo

As discussed previously (see figure 32), a simple and direct way to control the errors caused by the

neglected zero dynamics is by means of the servo structure shown in figure 43. The right-hand block

guidance
output

trajectory
generator

I
VF3(y_) ]

VFI(y '_) l

i

I

(y_)(')I
(y_),2,II

VF3(_/1)

VF l(ye )

(21

VF4(yl)

VF"2(y2 )

#

VF4(p) --

I
I

I
I
I

guidance regulator

xg xg

I

ug ug

Figure 43. Guidance servo in canonical coordinates.
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representstheexactsimulation,whosestateandcontrol (xg, ug) are taken as the solution to our guidance

problem. By construction, (xg, ug) always satisfies the state equation. The tracking error is given by

the difference between the commanded output produced by the guidance output trajectory generator, as

shown in figure 5 and discussed in Chapters 1 and 3 , and the actual output of the simulation:

VF3(y_)VFI(y_) (215)

For the pure feedback case, these errors are identically zero. In any case, the loop on that error is

closed by assuming that the system being regulated is a pure Brunowsky form. The corrective feedback

is injected into the fourth derivative of y_ and the second derivative of yC, which are the canonical2
controls for the pure feedback case:

_)_ = Kutoe .e (216)2 _,Y2,Y2)

The resulting modified signals VF4(yl) and VF2(y2) are then transformed as before by the pure

feedback dynamic inverse _o into the natural state and control. The state is used only to initialize the
simulation while the control drives the simulation model.

The design of the regulator law Kg is greatly simplified by the fact that the system to be controlled,

when viewed through the transformations T ° and T ° , is, except for the corrupting influence of the zero

dynamics, a collection of simple, decoupled strings of integrators. Linear techniques such as pole

placement are quite effective. Of course, the regulator may be nonlinear or include dynamic elements

such as filters to obtain smoothing. No gain scheduling is needed. That function is being provided

automatically by the linearizing transformations.

In the following numerical examples, a linear regulator was selected and all the gains were held

constant throughout the maneuvers. For each fourth-order string of integrators, the closed-loop poles,

including a first-order filter with time constant of T = 0.18, were placed at

(Wl,_l) = (0.5,0.7)

= (2.0,0.7)
o" = 2.0

(217)

For each second-order string of integrators, the closed-loop poles were placed at

(Wl, _1)= (2.0,0.7) (218)

and filters were not used.
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5 EXAMPLES

In this section we present two numerical examples.

5.1 Maneuver: Move Forward 300 Feet

Consider again the maneuver M1 described in figure 10. The commanded motion of the center of

mass, VF4(rC), which transfers the Harrier 300 feet forward in 18 seconds, from hover to hover, is

shown in figure 44. There are four segments. 1) In the first segment of the maneuver, 0 < t < 8, the

aircraft is accelerated to 30 ft/sec in the Harrier mode, namely # = HAR, while the pitch angle, which

is a parameter in this mode, is held at zero degrees. 2) In the second segment, 8 < t < 10, the aircraft

coasts for two seconds at 30 ft/sec with # = HAR. 3) In the third segment, 10 < t < 18, the aircraft

decelerates to hover with # - HEL, while the nozzle is commanded to 90 degrees. In this mode the

pitch axis is used for control, while the nozzle angle becomes a parameter. 4) In the last segment,

18 < t < 24, the command is to hover in the HEL mode.

0 /
40

0

I

J
J

i i i i

I

10_, , ,

0 5 10 15 20
time (sec)

25

Figure 44. Forward step: commanded position VF4(rc).

The behavior of the open-loop controls is shown in figure 45. The first panel shows the behavior

of the pitch moment control urn2. The solid curve is urn2,° which is the position of the pitch moment

control assuming zero angular velocity and zero angular acceleration. The dotted curve is Z2m2, which

is the position of the pitch moment control for the given angular velocity and acceleration without

correcting for the effects of zero dynamics on the resulting force. The second panel shows the throttle

and two of its derivatives, VF 2 (up1). The third panel shows the nozzle angle and two of its derivatives,

VF2(up3). The last panel shows the motion of the relative pitch angle and its derivatives, VF2(_btl).

This is also the total pitch angle 0 of the aircraft body axes since in this case the t-axes were chosen to

coincide with the runway axes, namely, Ctr = 1.
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Figure 45. Forward step: open-loop controls.

The t-coordinates of the force error caused by the zero dynamics is the difference

f_ = ft - f_ (219)

between the exact force ft, computed with the exact (e = 1) force algorithm F/r, and the commanded
force

f_ = Ctr(_l]/9 - 63) (220)

This force error, shown in the first panel of figure 46, is quite small. The small jagged sections are

inverter errors. The rest is due to zero dynamics. Some cross coupling from the longitudinal to normal

channels is evident in the HEL mode. The RCS jets that generate the pitch moment also generate normal

force. The inverse map by design does not take this effect into account. The resulting translational

acceleration errors are bounded by 0.25 ft/sec.

Thus far in the present example the open-loop behavior has been considered. Now consider the

e is shown in the second panelclosed-loop behavior, as in figure 43. The closed-loop tracking error r r

of figure 46. The maximum error for the entire maneuver is only 0.2 feet along track, and 0.6 feet

e ..e shown in the third panel, is bounded by the small valuein altitude. The acceleration error a r = r r,

of 0.25 ft/sec 2. The corrective feedback, (y_)(4) = (re)(4) (see figure 43), shown in the fourth panel,

is bounded by the small value 0.25 fdsec 4. So, the weak zero effects, in the present case of the step

forward maneuver, are well controlled by the simple and rather crude (guidance) regulator.
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Figure 46. Forward step: force errors.

5.2 Maneuver: Frisbee

As a second example, consider the Frisbee maneuver described in figures 12 and 13. This maneuver

is synthesized by means of 14 segments. During this complex maneuver, both the control and the attitude

coordinatization modes change. As shown in the first panel of figure 47, the trajectory transfers the

center of mass from hover at the origin to 4000 feet along the runway and 667 feet in altitude. The

second panel shows the behavior of the velocity Vrc. The duration of the maneuver is 50 seconds. The

horizontal velocity changes from zero to 215 ft/sec, and the vertical from 0 to 15 ft/sec climb rate.

The lateral velocity remains at zero. The third panel shows the yaw angle. Note the 360-degree yaw

maneuver. The large-angle maneuver is accomplished by means of an intermediate axis system t, as

described before. In the first part of the maneuver, Ctr is parameterized by means of Euler angles in

the standard sequence:

Ctr = EI(¢)E2(O)E3(¢) (221)

Then during the second, higher speed part, the wind path axis (WPA) parameterization is used.

The last panel shows the behavior of the body coordinates of the relative air velocity V_c. It may

be noted that during the initial, slow part of the maneuver, there is significant side velocity, and, in fact,

for a time the aircraft is flying backward, but in the high-speed condition the speed is along {'1 with no

side velocity.

The behavior of the open-loop controls is shown in figure 48. The first panel shows the moment

controls urn. There are three pairs of curves. The difference between members is due to the zero

dynamics. The next two panels show the throttle and nozzle and two of their derivatives. The last panel

shows the flap and aileron droop.
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Figure 47. Frisbee: trajectory VF4(rrc).
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The open-loopbehavior of the angularvariablesis shownin figure 49. The first part (the first
20 seconds)of the maneuveris accomplishedin the HAR mode, and the rest in the HEL mode.

The first panel showsthe motion of the relativeanglesabt locating the body axes b relative to the

intermediate axes t. In the first part of the maneuver, the roll angle c_bt3 rolls the force vector to

maintain along-track acceleration. In the second part, the relative pitch angle C_bt1 tips the force vector

forward to maintain along-track acceleration. Later in the maneuver, this angle becomes the angle of

attack (producing lift) because the coordinatization of aircraft attitude is switched to the wind path axes.
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Figure 49. Frisbee: open-loop rotation and force error.

The second and third panels in figure 49 show the first and second derivatives of abt. Both vectors

are well behaved. The force error f_ [see eq. (219)], due to zero dynamics, is shown in the bottom

panel. It is quite small, being bounded by 0.005 g's. The activity in the HAR mode is due to the RCS,

whereas the activity in the HEL mode is due to both RCS and the lift of the elevator.

The closed-loop position error r e, shown in the first panel of figure 50, is bounded by 1 ft throughout

this complex maneuver. The acceleration error are , shown in the second panel, is quite well behaved,

being bounded by the small value of 0.3 ft/sec 2. The corrective feedback (y_)(4) (see fig. 43) shown

in the third panel is active, but bounded by the small value of 1 ft/sec 4. The final panel shows the

closed-loop behavior of the moment control urn.
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In summary, the two fairly complex examples show that the proposed approach based on inversion

of the pure feedback approximation, followed by a regulator in canonical coordinates, is feasible for

maneuvers that are slow relative to the aircraft zero dynamics.
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6 CONCLUSION

An effective method has been described for guiding a dynamic system, such as an aircraft, through

complicated maneuvers. The maneuvers are specified by means of a control point table, which is the

discrete input to the guidance algorithm. The output is the continuous reference motion of the aircraft

state and all the controls. The state is maintained continuous across the control points. Furthermore,

this reference motion is flyable exactly by the aircraft simulation model. Therefore, the structure of

the regulator for the actual aircraft may be taken to be that of an exact model follower. This feature

has the great practical advantage that this (plant) regulator is subjected to process uncertainties only

and is not loaded down by apriori known signals. Consequently, the full authority of the regulator

is available for the control of disturbances and other uncertainties. The proposed multimode dynamic

inversion procedure, consisting of the pure feedback approximation followed by a (guidance) regulator, is
effective for maneuvers that are slow relative to the the plant zero dynamics. For stronger zero dynamics,

the method described in reference 10 for the improvement of the pure feedback approximation may be

employed. The methodology of the dynamic forms is very effective for organizing and drastically

simplifying the coding of the proposed algorithms.
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